首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal changes in the net photosynthesis and dark respiration in second-year needles of Siberian fir were investigated. The functional state of needles was shown to determine the structural features of mesophyll cells. Current-year shoot growth is one of the major factors affecting the structure and functional activity of second-year needles during the growing period. The greatest changes occur in the number of mitochondria in mesophyll cells and the respiration rate of second-year needles. The rate of photosynthesis in second-year needles was shown to depend on the number of thylakoids in mesophyll chloroplasts.  相似文献   

2.
Current-year, 1-year-old, 2-year-old, and 3-year-old needles of 25- to 30-year-old Pinus resinosa trees were separately exposed to C14O2 at various times during the growing season. Currently produced C14-photosynthate was preferentially mobilized in the following order: second-year cones > current needles > current internodes > first-year conelets. A changing seasonal pattern was shown in sources of current photosynthate for growth of cones and shoots. One-year-old needles were the major source of current photosynthate for growth of both cones and shoot internodes. During June the 2- and 3-year-old needles contributed appreciable amounts of current photosynthate to both cones and developing shoots, but after late June their contribution was slight. The supply of carbohydrates to all tissues, except 2nd-year cones, from the three age classes of old needles declined late in the season as tissues mobilized increasingly more carbohydrates from current-year needles. Nevertheless, the bulk of the C14-photosynthate produced by current-year needles was retained by them. The preferential mobilization of carbohydrates by reproductive tissues over vegetative tissues is emphasized as is the importance of both reserve and currently produced carbohydrate for growth of various tissues.  相似文献   

3.
Summary The cellular structures of acid rain-irrigated needles of several provenances of Norway spruce (Picea abies L. Karst) seedlings were studied after winter experimental freezing. Frost injuries and recovery were characterized by visual damage scoring and classification of mesophyll cell alterations, also using histochemical methods for carbohydrate fluorescent staining. The treatment with-30° C during the late dormancy period was sufficient to cause significant injuries and intracellular degradation in the tissues of the green needles. The most affected seedlings in terms of visual injury scoring were found among those treated with clean water or at pH 3, while freezing injury, defined as an occlusion of phenolic substances in the central vacuole of the mesophyll cells, was most abundant in the needles from spruces irrigated either with clean water or at pH 4 or pH 3. Electron microscopy revealed the details of the injury, e. g. thinning out of the cytoplasm and chloroplast stroma, darkening of the chloroplasts and eventually swelling of the chloroplasts and protoplast. PAS and ConA reactions in the needle tissue revealed intense starch accumulation in the mesophyll and transfusion tissues as early as in March, with a tendency to increase, especially in the untreated needles during the recovery period. Plasma membrane disturbances were indicated by histochemical identification of callose deposits in the mesophyll cell walls, these being most abundant in the acid rain-treated needles. All these findings suggest that freezing at –30° C was more deleterious to the seedlings pretreated with acid or clean water than to those not given additional irrigation.  相似文献   

4.
Ultrastructure of chloroplasts in leaf mesophyll cells of triazine resistant and triazine sensitiveAmaranthus retroflexus L. plants was evaluated stereologically. The most striking difference between both types of the chloroplasts was a small volume of starch inclusions in triazine resistant plants.  相似文献   

5.
 Scots pine (Pinus sylvestris L.) seedlings were exposed to three levels of potassium (low, medium and high) and their needle morphology, the cellular structure of the mesophyll and transfusion parenchyma, and the hardening status of the mesophyll cells were examined by light and transmission electron microscopy. The higher the potassium level the greater was the growth of the needles. The area of the mesophyll tissue increased slightly and those of the phloem, xylem and resin ducts decreased in the needles of the seedlings grown at the high K level. Cellular studies revealed that swelling of the chloroplast thylakoids, accumulation of starch in the chloroplasts, translucency of the cytoplasm and plasmolysis in the mesophyll cells were related to a low K level. The hardening status of the mesophyll cells was enhanced after 5 weeks of hardening treatment at high K as seen in changes in chloroplast shape and position and the structure of the endoplasmic reticulum, but the pines showed no major differences in the hardening status of their mesophyll cells between K levels at the end of the experiment, after 9 weeks of hardening. Frost resistance, as shown by the electrolyte leakage test, was nevertheless highest at low K, being related to the increase in the concentration of polyamine putrescine at this potassium level. Received: 23 December 1997 / Accepted: 30 March 1998  相似文献   

6.
To simulate feeding by the spruce budworm ( Choristoneura fumiferana Clem.), the apical current-year shoots on 1-year-old branches in the uppermost whorl of 6-year-old balsam fir [ Abies balsamea (L.) Mill.] trees were either removed completely by debudding before the start of the growing season or defoliated 0, 50, 90 or 100% shortly after budbreak. Debudded branches were treated at the apical end with 0, 0.1 or 1.0 mg of indole-3-acetic acid (IAA) (g lanolin)−1. Ninety % of the 1-year-old needles were also removed from some of the experimental branches. After ca 4 weeks of growth, the radial width of new xylem and the level of IAA were determined in the 1-year-old internode. The IAA content was measured by radioimmunoassay.
The removal or defoliation of current-year shoots inhibited tracheid production and decreased the IAA level. Exogenous IAA stimulated tracheid production and increased the IAA level in debudded branches. Current-year shoot defoliation also inhibited current-year shoot elongation. The inhibitory effect of current-year needle removal on all parameters generally increased with increasing intensity of defoliation. The removal of 1-year-old needles did not affect the IAA level or current-year shoot elongation, nor did it influence tracheid production in branches with current-year shoots. However, removal of 1-year-old needles inhibited tracheid production in debudded branches supplied with exogenous IAA. The results indicate that (1) IAA is involved in the control of tracheid production in the 1-year-old internode, (2) IAA is supplied primarily by current-year shoots, and (3) defoliation by the spruce budworm inhibits tracheid production partly by decreasing the supply of IAA.  相似文献   

7.
1 During outbreaks of the pine looper, Bupalus piniarius, its host, Pinus sylvestris, is severely defoliated. The larvae of this geometrid normally feed on mature needles. However, because trees are totally defoliated during outbreaks, the next generation is forced to feed on current-year needles. 2 Bupalus piniarius larvae feeding on previously defoliated trees may show lower performance either because of induced resistance or because larvae have to feed on needles not normally fed upon (current instead of mature). 3 These hypotheses were tested in an experiment where larvae were reared on (i) shoots naturally defoliated the previous year, and thus, bearing only current-year needles, (ii) non-defoliated shoots where larvae had access only to current-year needles, and (iii) control shoots with access to both current and mature needles. 4 There was no support for the induction hypothesis. Survival was lower on naturally defoliated shoots than on control shoots (81.3 vs. 90.9%), but survival was lower also on non-defoliated shoots where larvae had access only to current-year needles (78.8%). Data on larval feeding distribution showed a strong preference for mature needles. 5 Needle nitrogen concentration of current-year needles was 38% higher on defoliated trees than on non-defoliated trees. 6 It is concluded that defoliation affected larval performance primarily through the removal of the preferred type of needles and not because of an induced resistance. Effects of increased concentrations of allelochemicals in defoliated shoots, if present, were probably cancelled out by increased nitrogen concentrations.  相似文献   

8.
Histological and histochemical changes occurred in current-year needles of sensitive clonal selections of Pinus ponderosa Laws under natural summer growing conditions in the San Bernardino National Forest near Los Angeles, California due to fumigations with 0.45 ppm ozone for 12 hr/day. Within five days after the start of fumigation, chloroplasts and carbohydrate stain accumulated in the peripheral portions of mesophyll cells. Concurrently, the homogenous distribution of proteins and nucleic acids was disrupted. Succinate dehydrogenase was localized mostly in guard cells, resin duct epithelial cells, albuminous cells, and differentiating vascular tissues within unfumigated and fumigated leaves. Acid phosphatase activity increased within mesophyll cells during ozone exposure, but there was no association of acid phosphatase or ozone injury with stomata. Wall destruction occurred in mesophyll cells after appreciable intracellular damage. These histological and histochemical changes occurred within 5–7 days, but visual symptoms were not evident until 2–3 weeks after fumigation. It is thus possible to assay ozone damage very soon after exposure if no other external agents cause similar results.  相似文献   

9.
The ultrastructure of plastids was investigated in succulent leaves ofSedum rotundifolium to examine their changes during development. Leaves were categorized as etiolated, immature, young, and mature, based on their developmental stage and size. Of particular interest were the features of the tubular inclusion bodies (TIBs) and starch grains. These, along with vacuole size, showed remarkable changes over time. Etioplasts of unexposed leaves had prolamellar bodies, abundant starch grains, large TIB, few plastoglobuli, and thylakoid systems. Membranes of the thylakoids were still continuous with those of the prolamellar body. The plastids were often influenced by the presence and profile of inclusion bodies and starch grains throughout the early stages. Morphology was highly variable in the etioplasts but consistently hemispherical or ovoid in mature chloroplasts. TIB was most abundant in the etiolated leaves, but disappeared completely with development. Starch grains also became significantly reduced in size. Both young and mature mesophyll cells exhibited a normal chloroplast ultra-structure and huge central vacuoles, with an extremely thin peripheral cytoplasm. Grana were extensive and comprised a large portion of the chloroplasts. Traces of peripheral reticulum were also discovered in the chloroplasts of expanded leaves. The implications of these ultrastructural changes in the tubular inclusions and starch grains are discussed with relevance to Crassulacean acid metabolism (CAM).  相似文献   

10.
Cell specialization within the parenchymatous bundle sheath of barley   总被引:3,自引:0,他引:3  
Abstract. Structural and physiological aspects of the parenchymatous bundle sheath (PBS) were studied in cultivars of Hordeum distichum L. The PBS of intermediate, lateral and midrib veins consisted of a single layer of cells closely appressed to the mestome sheath. These cells were large, vacuolate and approximately cylindrical in shape, extending parallel to the vein. Mean PBS cell volume was 4 × 10−5mm3 compared to 1.23 × 10−5mm3 for mesophyll cells. Transverse sections revealed three cell types within the PBS, cells with small chloroplasts (S-type), cells with large chloroplasts (L-type) and structural cells. The majority of cells were S-type, containing chloroplasts of approximately a third of the volume of mesophyll chloroplasts; they were able to reduce tetranitro blue-tetrazolium and synthesize starch. Structural cells interrupted the phloem and xylem are of the sheath in lateral veins and the midrib, whilst between one and four PBS cells within the phloem are of each vein type contained chloroplasts similar in volume and starch content to those of the mesophyll. Only these L-type cells contained noticeable starch grains at the end of an 8-h dark period, a further 4 h darkness being required for complete mobilization of starch. Starch deposition within S-type and structural cells was detectable after 4 h illumination but was only appreciable in leaves excised from the plant and illuminated for 9–12 h. The role of S-type PBS cells in assimilate transport is discussed in relation to these findings.  相似文献   

11.
The ultrastructure of chloroplasts in mesophyll cells of Pinus silvesris was examined under the electron microscope. Secondary needles were regularly sampled from a tree in a natural stand for one year. Primary needles from one-year-old seedlings exposed to frost hardening and dehardening conditions in a controlled environment chamber were also studied. These seedlings were exposed to 8 or 55 W m-2. All needles were put in fixative at the different sampling dates and stored in a refrigerator until they were prepared for electron microscopy at the end of the experimental period. During the summer the choroplasts were symmetrically shaped and heavily loaded with starch. The membrane systems were well developed and consisted of both grana and stroma thylakoids. In autumn and during early artificial frost hardening the starch content was reduced, the chloroplasts appeared amoeboid and membrane-free stroma regions were seen. Later the chloroplasts became swollen and aggregated in one part of the cell. Starch was lost and the chloroplasts aggregated earlier at 8 W m-2 than at 55 W m-2. During winter the stroma thylakoids were first reduced in number and later even the grana thylakoids were damaged, resulting in mostly disorganized single membranes. Also the chloroplast envelope disappeared. In spring and early summer the chloroplasts migrated to the proximity of the cell walls. The membrane systems were reorganized and starch accumulated. During the first days of artificial dehardening the photosynthetic membranes were severely damaged, especially at 55 W m-2, but soon new membranes were formed. Starch accumulated earlier at 55 than at 8 W m-2. The reported ultrastructural variations are discussed in relation to functional and biochemical fluctuations caused by the season or by artificial variations in the climate as demonstrated earlier.  相似文献   

12.
The morphological and functional organization of the needles of Scotch pine (Pinus sylvestris L.) and Siberian fir (Abies sibirica Ledeb.), which differ in their light requirement were studied. The characteristic properties of the high-light-requiring pine included high rates of apparent photosynthesis and dark respiration, high assimilation number, numerous folds in mesophyll cell walls, and increased partial volume of intercellular spaces and hyaloplasm in the mesophyll. In the needles of shade-enduring fir, the higher efficiency of photosynthesis at low light intensities depended on the higher number of membranes and higher pigment content in the chloroplasts. The low assimilation number in fir indicated a shortage of photosynthetic reaction centers. The relative volume of the vascular cylinder and the vascular bundles in the needles and the partial volume of chloroplasts in the hyaloplasm, are considered as indices of the rate of assimilate export from mesophyll cells and their possible damping at different levels of structural organization.  相似文献   

13.
Effects of water stress on needle ultrastructure of 2-year-old Scots pine (Pinus sylvestris L.) and 5-year-old Norway spruce [Picea abies (L.) Karst.] seedlings were studied in greenhouse experiments. Drought stress was induced by leaving seedlings without watering, and waterlogging stress was produced by submerging the seedling containers in water. Needle samples for ultrastructural analyses were collected several times during the experiments, and samples for nutrient analyses at the end of the experiments. In drought stress, plasmolysis of mesophyll and transfusion parenchyma tissues, aggregation of chloroplast stroma and its separation from thylakoids and decreased size and abundance of starch grains in needles of both species were observed. The concentration of lipid bodies around the chloroplasts were detected in pine needles. Calcium and water concentrations in spruce needles were lower by the end of the experiments compared to controls. In waterlogging treatment, swelling of phloem cells in pine needles and large starch grains, slight swelling of thylakoids and increased translucency of plastoglobuli in chloroplasts of both species studied were observed. The phosphorus concentration in pine needles was higher while phosphorus, calcium and magnesium concentrations in spruce needles were lower in the waterlogging treatments compared to controls. Typical symptoms induced by drought stress, e. g. aggregation of chloroplast stroma and its separation from thylakoids, were detected, but, in waterlogging stress, ultrastructural symptoms appeared to be related to the developing nutrient imbalance of needles.  相似文献   

14.
CAMPBELL  R. 《Annals of botany》1976,40(4):851-855
The hyphae of Lophodermella sulcigena are usually surroundedby an electron-opaque matrix when growing in the needles ofCorsican pine (Pinus nigra var. maritima). The host-parasiteinterface is of a type which has been little studied; the intercellularhyphae kill the mesophyll cells of the host ahead of themselvesand their walls are separated from those of the host by a matrix.The first signs of injury to the host are disorganized membranesystems, particularly the thylakoid and bounding membranes ofthe chloroplasts break down. The dead host cells are filledwith resin or tannin in which only the starch grains are visible.  相似文献   

15.
Utilization of storage starch in the cells of cotyledon mesophyll and root meristem in the course of alfalfa (Medicago sativa L.) seed germination on the solutions of NaCl, Na2SO4, and mannitol at different concentrations and identical osmotic pressure was investigated using the method of transmission electron microscopy. Ultrastructural analysis showed changes in the number of starch grains and deceleration of chloroplast development depending on the osmotic component of salt influence. At low concentrations corresponding to osmotic pressure of 202.6 kPa, Na2SO4 did not affect the formation of the photosynthetic machinery and utilization of starch inclusions; mannitol contributed to the preservation of considerable reserve of starch without disturbing the development of chloroplasts; NaCl did not inhibit the development of the photosynthetic machinery and induced an increase in the number of starch grains presumably at the expense of newly produced starch. When the concentration of the investigated substances increased up to the values corresponding to the osmotic pressure of 607.8 kPa, NaCl did not suppress transformation of amyloplasts into chloroplasts and utilization of starch; Na2SO4 inhibited the development of chloroplasts and starch utilization; mannitol decelerated transformation of amyloplasts and inhibited mobilization of starch grains. The obtained results make it possible to propose a method of preliminary estimation of tolerance of dicotyledons to abiotic stresses based on the cytological analysis of utilization of starch grains and formation of photosynthetic compartments of chloroplasts in the mesophyll of cotyledons.  相似文献   

16.
For several decades, southern California experienced the worst ozone pollution ever reported. Peak ozone concentrations have, however, declined steadily since 1980. In this study, the structural injuries underlying ozone symptoms in needles of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) collected in summer 2006 from one of the most polluted sites in the San Bernardino Mountains were investigated using serial sections examined by light and electron microscopy. Ozone-specific light-green diffuse mottling was observed in the current-year needles, whereas older foliage showed brownish mottling similar to winter fleck injury. Especially, within the outer layers of mesophyll, many markers of oxidative stress, typical for ozone, were observed in both apoplast and symplast. Altogether within cells of mottles, these markers were indicative of hypersensitive-like response, whereas degenerative structural changes were diagnosed in the surrounding mesophyll. Evidence of drought stress and frost injury to older needles was also detected. Hence, mottling injury appeared to be primarily caused by ozone stress, however, other environmental stressors also determined the symptom morphology and distribution, especially within the older foliage.  相似文献   

17.
Developmental studies of Opuntia basilaris Engelm. & Bigel. leaves revealed the presence of three morphologically distinct types of plastids. All epidermal cells examined contained chloroplasts. After 13 days of growth in the dark the plastids of epidermal and mesophyll cells were characterized by the presence of a prolamellar body and fibril inclusions. Epidermal plastids which developed under light conditions contained large stromacentres and a limited grana-fret membrane system. Guard cell plastids developed under similar conditions had a much poorer developed grana system with fibril inclusions apparent only during the developmental stages. At maturity these plastids appeared swollen or dilated. Mesophyll plastids had fibril inclusions during all stages of development and at maturity contained a very extensive grana-fret membrane system. Microbodies were found in association with the mesophyll plastids. Starch accumulation was common in subsidiary cell and guard cell plastids.  相似文献   

18.
The phloem-loading-related effects of temperature on leaf ultrastructure were studied in seven species having numerous plasmodesmatal connections between the mesophyll and phloem (symplasmic minor-vein configuration). The response to temperature (between 5 and 30 °C) was characterized by drastic changes in the endoplasmic-reticulum labyrinth (ER labyrinth) of intermediary cells, in the position of the vacuole in bundle-sheath cells, and in the starch content in the chloroplasts of bundle-sheath cells and mesophyll cells. At temperatures above 20 °C, the ER system in the intermediary cells reached its maximal volume, while the vacuole in bundlesheath cells was positioned centripetally (proximal to the intermediary cell). With decreasing temperature, the ER labyrinth in intermediary cells gradually contracted till the ER was fully collapsed at 10 °C and the vacuole in bundle-sheath cells moved to a more centrifugal position. The apparent elimination of photosynthate transport via the ER and plasmodesmata at temperatures lower than 10 °C led to starch accumulation in the chloroplasts of bundle-sheath cells and mesophyll cells. All of these changes were fully temperature-reversible and probably reflect changes in the balance between photosynthate transport and storage. The ultrastructural shifts appear to be correlated with the passage of photosynthate through the intermediary cells and, as a consequence, with the rate of phloem loading at various temperatures. A contraction of the ER/plasmodesmata system imposed by cytoskeletal reorganisation is discussed as the reason for the blockage of phloem loading at low temperatures in association with the general chilling sensitivity of these species.Abbreviations BSC bundle-sheath cell - IC intermediary cell - MC mesophyll cell - PD plasmodesmata - PFD photon flux density - SE/CC-complex sieve element/companion cell complex The authors gratefully acknowledge the financial support by NWO (Dutch Organization for Scientific Research).  相似文献   

19.
In the first year of an outbreak, Bupalus piniarius larvae, encounter intense crowding. In the later stages of larval development, they are forced to feed on the non-preferred current-year needles of Scots pine or even on alternative hosts. It was hypothesized that larval feeding on a non-preferred resource (current-year needles) will negatively affect B. piniarius performance. It was also hypothesized that larval mutual interference (crowding without competition for food) will have negative additive effects. These hypotheses were tested in laboratory and field experiments. Fourth instar larvae were reared singly and under crowded conditions in cohorts of ten. Larvae in both situations were reared on control branches (containing both mature and current-year shoots) and branches containing only current-year shoots. Crowded larvae were reared also on Norway spruce, an alternative host. Crowding and feeding on a non-preferred resource had opposite effects on B. piniarius larval performance. Crowding in the late larval instars enhanced larval performance while absence of the preferred resource had negative effects. Larval growth rate was higher and development time was shorter for larvae exposed to crowded conditions than for solitary larvae. There was, however, no difference between the groups in final pupal weights or survival. Survival was 25% lower for larvae feeding on non-preferred current-year needles and pupal weights 9% lower, compared with results for larvae feeding on mature needles. Larvae feeding on Norway spruce suffered greatly extended development time, 82% lower survival, and resulted in 60% lighter pupae compared with conspecifics on Scots pine. It was concluded that not only quantity but also quality of the available food resource is critical for B. piniarius development.  相似文献   

20.
R. A. Stevens  E. S. Martin 《Planta》1978,142(3):307-316
Differential cell wall thickening in developing guard cells of Polypodium vulgare L. has been studied with particular reference to guard cell protoplast deformation and the eventual formation of the stomatal pore. Concomitant studies on the development of guard cell chloroplasts and their starch inclusions during ontogeny of the stomatal complex have provided data which have been incorporated into a model to account for the formation of the pore. Guard cell starch inclusions reach a maximum density per unit volume at the same time as the guard cell walls achieve maximum differential thickening. These events coincide with the development of the pore. It is suggested that, whilst pore formation is initiated enzymatically, the mechanical forces required to bring about the separation of the two guard cells are of an osmotic nature derived from starch hydrolysis. The development of the mesophyll in relation to the epidermis is examined in respect of the formation of substomatal chambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号