首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The p-menthane monoterpenes of the Mentha species are biosynthesized from geranyl pyrophosphate via the monocyclic olefin 4S-limonene. A monoterpene cyclase was isolated from both Mentha x piperita (peppermint) and Mentha spicata (spearmint) that catalyzes the cyclization of geranyl pyrophosphate to 4S-limonene. This enzyme, 4S-limonene synthase, was purified to apparent homogeneity by dye ligand, anion exchange, and hydrophobic interaction chromatography. Since the monoterpenes of Mentha are synthesized and secreted in modified epidermal hairs called glandular trichomes, an extract of isolated glandular trichome cells was used as the source of this enzyme. A combination of gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that purified 4S-limonene synthase had a native molecular weight of 56,000 and was monomeric. The principal product of the enzyme was enantiomerically pure (-)-4S-limonene, and a catalytic constant of 0.3/s was determined. The basic properties of 4S-limonene synthase from both M. x piperita and M. spicata are identical and, in general, are similar to those of other monoterpene, sesquiterpene, and diterpene cyclases isolated from microorganisms and higher plants.  相似文献   

2.
Microsomal preparations from the epidermal oil glands of Mentha piperita, Mentha spicata, and Perilla frutescens leaves catalyze the NADPH- and O2-dependent allylic hydroxylation of the monoterpene olefin (-)-limonene at C-3, C-6, and C-7, respectively, to produce the corresponding alcohols, (-)-trans-isopiperitenol, (-)-trans-carveol, and (-)-perillyl alcohol. These transformations are the key steps in the biosynthesis of oxygenated monoterpenes in the respective species, and the responsible enzyme systems meet most of the established criteria for cytochrome P450-dependent mixed function oxygenases. The reactions catalyzed are completely regiospecific and, while exhibiting only a modest degree of enantioselectivity, are highly specific for limonene as substrate. Of numerous monoterpene olefins tested, including several positional isomers of limonene, only the 8,9-dihydro analog served as an alternate substrate for ring (C-3 and C-6) hydroxylation, but not side chain (C-7) hydroxylation. In addition to the regiospecificity of the allylic hydroxylation, these enzymes are also readily distinguishable based on differential inhibition by substituted imidazoles.  相似文献   

3.
(4S)-Limonene synthase, a monoterpene cyclase isolated from the secretory cells of the glandular trichomes of Mentha x piperita (peppermint), catalyzes the cyclization of geranyl pyrophosphate to (4S)-limonene, a key intermediate in the biosynthesis of p-menthane monoterpenes in Mentha species. The enzyme synthesizes principally (-)-(4S)-limonene (greater than 94% of the total products), plus several other monoterpene olefins. The general properties of (4S)-limonene synthase resemble those of other monoterpene cyclases. The enzyme shows a pH optimum near 6.7, an isoelectric point of 4.35, and requires a divalent metal ion for catalysis, either Mg2+ or Mn2+, with Mn2+ preferred. The Km value measured for geranyl pyrophosphate was 1.8 microM. The activity of (4S)-limonene synthase was inhibited by sodium phosphate, sodium pyrophosphate, and reagents directed against the amino acids cysteine, methionine, and histidine. In the presence of Mn2+, geranyl pyrophosphate protected against cysteine-directed inhibition, suggesting that at least one cysteine residue is located at or near the active site. Experiments with alternate substrates and substrate analogs confirmed many elements of the proposed reaction mechanism, including the binding of geranyl pyrophosphate in the form of a complex with the divalent metal ion, the preliminary isomerization of geranyl pyrophosphate to linalyl pyrophosphate (a bound intermediate capable of cyclization), and the participation of a series of carbocation:pyrophosphate anion pairs in the reaction sequence.  相似文献   

4.
国产野生薄荷挥发油化学组分变异及其化学型   总被引:10,自引:0,他引:10  
采用气-质联用的方法,对国产野生薄荷(MenthahaplocalyxBriq.)居群的挥发油成分进行了分析,22个样品可归纳为6个化学型:(1)薄荷酮-胡薄荷酮型(menthone-pulegonetype);(2)胡椒酮型(piperitonetype);(3)氧化胡椒酮-氧化胡椒烯酮型(piperitoneoxide-piperitenoneoxidetype);(4)芳樟醇-氧化胡椒酮型(linalool-piperitoneoxidetype);(5)香芹酮型(carvonetype);(6)薄荷醇-乙酸薄荷酯型(menthol-menthylacetatetype)。结合地理分布和薄荷属单萜类成分生物合成途径,对上述主要类型进行了讨论。  相似文献   

5.
Turner GW  Croteau R 《Plant physiology》2004,136(4):4215-4227
We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.  相似文献   

6.
(-)-Menthone, the major monoterpene component of the essential oil of maturing peppermint (Mentha piperita L.) leaves (6 micromoles per leaf) is rapidly metabolized at the onset of flowering with a concomitant rise in the level of (-)-menthol (to about 2 micromoles per leaf). Exogenous (-)-[G-(3)H]menthone is converted into (-)-[(3)H]menthol as the major steam-volatile product in leaf discs in flowering peppermint (10% of incorporated tracer); however, the major portion of the incorporated tracer (86%) resided in the nonvolatile metabolites of (-)-[G-(3)H]menthone. Acid hydrolysis of the nonvolatile material released over half of the radioactivity to the steamvolatile fraction, and the major component of this fraction was identified as (+)-neomenthol by radiochromatographic analysis and by synthesis of crystalline derivatives, thus suggesting the presence of a neomenthyl glycoside. Thin layer chromatography, ion exchange chromatography, and gel permeation chromatography on Bio-Gel P-2 allowed the purification of the putative neomenthyl glycoside, and these results suggested that the glycoside contained a single, neutral sugar residue. Hydrolysis of the purified glycoside, followed by reduction of the resulting sugar moiety with NaB(3)H(4), generated a single labeled product that was subsequently identified as glucitol by radio gas-liquid chromatography of both the hexatrimethylsilyl ether and hexaacetate derivative, and by crystallization to constant specific radioactivity of both the alditol and the corresponding hexabenzoate. These results, along with studies on the hydrolysis of the glycoside by specific glycosidases, strongly suggest that (+)-neomenthyl-beta-d-glucoside is a major metabolite of (-)-menthone in flowering peppermint. This is the first report on the occurrence of a neomenthyl glycoside, and the first evidence implicating glycosylation as an early step in monoterpene catabolism.  相似文献   

7.
The volatile oil of immature Artemisia absinthium L. leaves contains sabinyl acetate (42%), 3-thujone (32%), sabinene (12%), and α-thujene (3%) as major constitutents, and label from the acyclic precursor [1-3H]geraniol was incorporated, under aerobic conditions, into these thujane-type monoterpenes in proportion to their natural abundance in this tissue. Light had little effect on the synthesis of these monoterpenes from exogenous geraniol; however, at reduced oxygen levels, label from geraniol accumulated in the olefin sabinene while much less sabinyl acetate and 3-thujone were formed, suggesting a route to the ester and ketone by the allylic, nonphotochemical, oxygenation of sabinene. Supporting evidence for the intermediary role of the olefin was provided by isotopic dilution studies in which sabinene, but not α-thujene, blocked formation of the oxygenated derivatives from the labeled precursor. [10-3H]Sabinene was incorporated directly as a substrate in A. absinthium leaves into both [10-3H]sabinyl acetate and 3-[10-3H]thujone. Furthermore, [3H]sabinene was specifically incorporated into 3-thujone in Tanacetum vulgare and into the diastereomeric ketone 3-isothujone in Salvia officinalis, confirming the role of this bicyclic olefin as the essential precursor of C(3)-oxygenated thujane monoterpenes.  相似文献   

8.
The dominant gene Lm that causes 60–90% limonene/cineole was substituted into M. aquatica by four convergent backcrosses. The natural strain of M. aquatica has 7·7% cineole, 4·9% limonene, traces of terpinolene and pulegone, 0·1% menthone, 0.2% menthol, and 66·4% menthofuran. The two modified hybrid strains with dominant gene Lm have 53·8 and 78·7% limonene/cineole and a total of only 1·0-3·8% 3-oxygenated compounds in contrast to a total of 66·7% found in the natural strain. The postulate is made that the Lm gene largely prevents either the conversion of a-terpineol → terpinolene or of limonene → isopiperitenone and that in these strains the recessive cc genotype largely but not completely prevents the conversion of limonene → carvone resulting in limonene accumulation. Mentha species almost invariably have either 2-oxygenated or 3-oxygenated compounds, not both. Close coupling phase linkage of the genes Lm and C explains why the self-pollinated progeny of M. spicata or M. crispa C-Lm/c-lm have a ratio of 3 carvone/dihydrocarvone: 1 pulegone/menthone rather than a ratio of 9 carvone : 3 limonene : 3 carvone and menthone: 1 menthone which would be expected if the genes Lm and C were independently inherited  相似文献   

9.
This paper reports studies on the growth and biosynthesis of monoterpenes by transformed shoot cultures of Mentha citrata and Mentha piperita, originally developed 5 years ago and since maintained by regular subculturing. Throughout this time, the M. citrata culture has stably maintained production of an oil closely resembling that of the parent plant in which linalool and linalyl acetate are the predominant components. However, M. piperita, which initially showed a divergence from the parent plant in producing significant amounts of menthofuran in addition to the characteristic oil components menthol and menthone, has now been found to produce pulegone and menthofuran as the major components. The cultures were subjected to different environmental conditions of varying periods of light and temperature in an attempt to restore menthol and menthone production. Increased illumination reduced the yields of pulegone and menthofuran but did not stimulate the production of either menthol or menthone, which remained only at trace levels (below 0.2 g/g fresh weight). Cultures of M. citrata were, however, stimulated by increased illumination, and produced more linalool and linalyl acetate. Shoot cultures of M. citrata and M. piperita were grown in 14–1 fermenters for up to 60 dys during which the biomass increased from approximately 100 g to 2.5 kg and 3.5 kg respectively. Both cultures rapidly consumed sucrose with a concomitant release of glucose, and the uptake of inorganic ions was similar except that M. citrata consumed far less Na+ during the fermentation. The total yields of monoterpenes from the fermentations were 1.16 g (M. piperita) and 0.18 g (M. citrata). *** DIRECT SUPPORT *** AG903062 00005  相似文献   

10.
The optimum concentration of chitosan to menthol production by Mentha piperita cells cultured in shake flasks was 200 mg/l, which gave 166 mg menthol/l after 12 days. Chitosan elicitation may activate the conversion of pulegone to menthol.  相似文献   

11.
Analysis by GC and GC/MS of the essential oil obtained from above-ground parts of Micromeria dalmatica Benth. allowed the identification of 116 components, comprising 93.6% of the total oil composition. The major compounds are 3-oxygenated p-menthane monoterpenes and were identified as pulegone (29.6%), menthone (11.7%), and piperitenone (10.8%). The chemical composition of this and additional 30 oils obtained from selected Micromeria Benth. taxa were compared by using multivariate statistical analysis (agglomerative hierarchical cluster analysis and principal component analysis (PCA)). The results of statistical analyses, as well as the domination of different concurrent p-menthane-skeleton-type monoterpene biosynthetical sub-branches in the compared M. dalmatica samples, implied the occurrence of at least two different chemotypes of the mentioned species.  相似文献   

12.
(+)-Pinene cyclase from sage (Salvia officinalis) catalyzes the isomerization and cyclization of geranyl pyrophosphate to (+)-alpha-pinene and (+)-camphene, and to lesser amounts of (+)-limonene, myrcene, and terpinolene, whereas (-)-pinene cyclase from this tissue catalyzes the conversion of the acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene, and (-)-camphene, and to lesser quantities of (-)-limonene, myrcene, and terpinolene. The bicyclic products of these enzymes (pinene and camphene) are derived via the cyclization of the cisoid, anti-endo-conformers of the bound, tertiary allylic intermediates (3R)-linalyl pyrophosphate [+)-pinene cyclase) and (3S)-linalyl pyrophosphate [-)-pinene cyclase). When challenged with either enantiomer of linalyl pyrophosphate or with neryl pyrophosphate (cis-isomer of geranyl pyrophosphate) as substrate, both pinene cyclases synthesize disproportionately high levels of acyclic olefins (myrcene and ocimene) and monocyclic olefins (limonene and terpinolene), compared with the product mixtures generated from the natural geranyl precursor. Resolution of the limonene derived from linalyl pyrophosphate and neryl pyrophosphate demonstrated that this monocyclic olefin was formed via conformational foldings in addition to the cisoid,anti-endo-pattern. These results indicate that the alternate substrates are ionized by the cyclases prior to their achieving the optimum orientation for bicyclization. In the case of geranyl pyrophosphate, a preassociation mechanism is suggested in which optimum folding of the terpenyl chain precedes the initial ionization step.  相似文献   

13.
Mentha pulegium L. is an aromatic herb belonging to the Lamiaceae family, a wild plant which is distributed in different areas of Iran. In this research, we evaluated the variability of essential oil content and compositions of 12 M. pulegium populations. Essential oils were analyzed using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) methods. The essential oils content varied from 0.22 to 1.63% w/w within different populations. Twenty-nine compounds were identified which represent 83.4–98.7% of the total essential oil. The most significant essential oil compounds among the studied population were identified using the principal components analysis (PCA-biplot). According to the PCA-biplot, the major compounds were pulegone (2.5–51.7%), menthone (0.2–25.3%), limonene (0.0–35.4%), 1,8-cineol (0.0–33.4%), piperitenone oxide (0.2–55.2%), and trans-piperitone epoxide (0.0–28.5%). Besides, hierarchical cluster analysis indicated that the studied populations were classified into two main clusters based on the essential oil components. The canonical correspondence analysis (CCA) indicated that some environmental factors could influence the phytochemical constituents as well as the antioxidant activity. The temperature and altitude were effective environmental factors with regards to 1–8 cineol, limonene and menthone content, while average rainfall was the most effective factor with respect to trans-piperitone epoxide, piperitenone oxide, and pulegone content. Our results consequently showed that environmental factors had a significant effect on the essential oil content and its antioxidant activity in M. pulegium populations.  相似文献   

14.
Rycroft DS  Cole WJ 《Phytochemistry》2001,57(3):479-488
The structure of a prenylbenzene derivative isolated previously from a Cuban specimen of the liverwort Plagiochila rutilans is revised to 2-methoxy-6-prenylhydroquinone. The hydroquinone was observed as a prominent component of the NMR and GC-MS fingerprints of five recent specimens of the liverwort from Bolivia, Brazil and Costa Rica. The corresponding quinone was observed as a minor component. Two new methylated derivatives of the hydroquinone were observed as prominent components in one specimen from Bolivia; these were isolated, characterized, and their structures elucidated as 2-methoxy-1-O-methyl-6-prenylhydroquinone and 2-methoxy-4-O-methyl-6-prenylhydroquinone using 1H NMR spectroscopy. The liverwort has a strong peppermint-like odour that is caused by the presence of several menthane monoterpenoids, including notably pulegone, menthone, isomenthone. terpinolene and limonene. One of the Costa Rican specimens contained considerable amounts of the new lactone 3,7-dimethyl-2,6-octadien-1,6-olide as the principal monoterpenoid in place of pulegone. Two Costa Rican specimens distinguished morphologically as Plagiochila standleyi (a taxon closely related to P. rutilans and reduced elsewhere to a variety of that species) are characterized by large amounts of 3-hydroxy-4'-methoxybibenzyl. P. standleyi was also reported to have a peppermint-like odour in the field. Menthane monoterpenoids were again responsible but in this case the major components were limonene, beta-phellandrene, alpha-terpinene and the endoperoxide ascaridole.  相似文献   

15.
Secretory cells were isolated from the monoterpene-producing glandular trichomes (peltate form) of peppermint as clusters of eight cells each. These isolated structures were shown to be non-specifically permeable to low-molecular-weight, water-soluble cofactors and substrates. Short incubation periods with the polar dye Lucifer yellow iodoacetamide (Mr=660) resulted in a uniform staining of the cytoplasm, with exclusion of the dye from the vacuole. The molecular-weight exclusion limit for this permeability was shown to be less than approx. 1800, based on exclusion of fluorescein-conjugated dextran (Mr 1800). Intact secretory cell clusters very efficiently incorporated [3H]geranyl pyrophosphate into monoterpenes. The addition of exogenous cofactors and redox substrates affected the distribution of monoterpenes synthesized from [3H]geranyl pyrophosphate, demonstrating that the cell clusters were permeable to these compounds and that the levels of endogenous cofactors and redox substrates were depleted in the isolated cells. When provided with the appropriate cofactors, such as NADPH, NAD+, ATP, ADP and coenzyme A, the isolated secretory cell clusters incorporated [14C]sucrose into monoterpenes, indicating that these structures are capable of the de-novo biosynthesis of monoterpenes from a primary carbon source, and that they maintain a high degree of metabolic competence in spite of their permeable nature.Abbreviations GLC gas liquid chromatography - LSCM laser scanning confocal microscopy - LY-IA Lucifer yellow iodoacetamide This investigation was supported in part by U.S. Department of Energy Grant DE-FG0688ER13869 and by Project 0268 from the Washington State University Agricultural Research Center. Light microscopy was carried out in the Plant Biology Light Microscopy and Image Analysis Facility (WSU) funded by the National Science Foundation (DIR9016138). We thank Greg Wichelns for growing the plants and Stephen Pfeiffer (BioRad Microsciences Division, Cambridge, Mass, USA), for help acquiring the confocal images.  相似文献   

16.
Previous studies have shown that the monoterpene ketone l-[G-3H] menthone is reduced to the epimeric alcohols l-menthol and d-neomenthol in leaves of flowering peppermint (Mentha piperita L.), and that a portion of the menthol is converted to menthyl acetate while the bulk of the neomenthol is transformed to neomenthyl-β-d-glucoside which is then transported to the rhizome (Croteau, Martinkus 1979 Plant Physiol 64: 169-175). Analysis of the disposition of l-[G-3H]menthone applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis and transport of the monoterpenyl glucoside to be determined, and gave strong indication that the glucoside was subsequently metabolized in the rhizome. Studies with d-[G-3H]neomenthyl-β-d-glucoside as substrate, using excised rhizomes or rhizome segments, confirmed the hydrolysis of the glucoside as an early step in metabolism at this site, and revealed that the terpenoid moiety was further converted to a series of ether-soluble, methanol-soluble, and water-soluble products. Studies with d-[G-3H]neomenthol as the substrate, using excised rhizomes, showed the subsequent metabolic steps to involve oxidation of the alcohol back to menthone, followed by an unusual lactonization reaction in which oxygen is inserted between the carbonyl carbon and the carbon bearing the isopropyl group, to afford 3,4-menthone lactone. The conversion of menthone to the lactone, and of the lactone to more polar products, were confirmed in vivo using l-[G-3H]menthone and l-[G-3H]-3,4-menthone lactone as substrates. Additional oxidation products were formed in vivo via the desaturation of labeled neomenthol and/or menthone, but none of these transformations appeared to lead to ring opening of the p-menthane skeleton. Each step in the main reaction sequence, from hydrolysis of neomenthyl glucoside to lactonization of menthone, was demonstrated in cell-free extracts from the rhizomes of flowering mint plants. The lactonization step is of particular significance in providing a means of cleaving the p-menthane ring to afford an acyclic carbon skeleton that can be further degraded by modifications of the well-known β-oxidation sequence.  相似文献   

17.
Bacilliform and bullet-shaped particles measuring 360 × 80 nm and 180x 80 nm respectively, were found in the perinuclear space of parenchymatous cells in the vascular bundles of leaves, or roots of Mentha piperita. All particles contained bullet-shaped, electron dense cores and were enveloped by a unit membrane with spikes on its surface. The typical morphology and the intracellular occurrence of these particles leads us to the conclusion that they are rhabdoviruses.  相似文献   

18.
Cyclase I from Salvia officinalis leaf catalyzes the conversion of geranyl pyrophosphate to the stereo-chemically related bicyclic monoterpenes (+)-alpha-pinene and (+)-camphene and to lesser quantities of monocyclic and acyclic olefins, whereas cyclase II from this plant tissue converts the same acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene and (-)-camphene as well as to lesser amounts of monocyclics and acyclics. These antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H]Linalyl pyrophosphate (3H:14C = 5.14) was tested as a substrate with both cyclases to determine the configuration of the cyclizing intermediate. This substrate with cyclase I yielded alpha-pinene and camphene with 3H:14C ratios of 3.1 and 4.2, respectively, indicating preferential, but not exclusive, utilization of the (3R)-enantiomer. With cyclase II, the doubly labeled substrate gave bicyclic olefins with 3H:14C ratios of from 13 to 20, indicating preferential, but not exclusive, utilization of the (3S)-enantiomer in this case. (3R)- and (3S)-[1Z-3H]linalyl pyrophosphate were separately compared to the achiral precursors [1-3H]geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. With cyclase I, geranyl, neryl, and (3R)-linalyl pyrophosphate gave rise exclusively to (+)-alpha-pinene and (+)-camphene, whereas (3S)-linayl pyrophosphate produced, at relatively low rates, the (-)-isomers. With cyclase II, geranyl, neryl, and (3S)-linalyl pyrophosphate yielded exclusively the (-)-isomer series, whereas (3R)-linalyl pyrophosphate afforded the (+)-isomers at low rates. These results are entirely consistent with the predicted stereochemistries and additionally revealed the unusual ability of these enzymes to catalyze antipodal cyclizations when presented with the unnatural linalyl enantiomer.  相似文献   

19.
Dimethylallyl diphosphate (DMADP) and geranyl diphosphate (GDP) are the last precursors of isoprene and monoterpenes emitted by leaves, respectively. DMADP and GDP pools were measured in leaves of plants emitting isoprene (Populus alba), monoterpenes (Quercus ilex and Mentha piperita), or nonemitting isoprenoids (Prunus persica). Detectable pools were found in all plant species, but P. persica showed the lowest pool size, which indicates a limitation of the whole pathway leading to isoprenoid biosynthesis in nonemitting species. The pools of DMADP and GDP of nonemitting, isoprene-emitting, and monoterpene-emitting species were partially labeled (generally 40%-60% of total carbon-incorporated (13)C) within the same time by which volatile isoprenoids are fully labeled (15 min). This indicates the coexistence of two pools for both precursors, the rapidly labeled pool presumably occurring in chloroplasts and thereby synthesized by the methylerythritol phosphate pathway and the nonlabeled pool presumably located in the cytosol and synthesized by the mevalonic pathway. In M. piperita storing monoterpenes in specialized leaf structures, the GDP pool remained totally unlabeled, indicating either that monoterpenes are totally formed by the mevalonic pathway or that labeling occurs slowly in comparison to the large pool of stored monoterpenes in this plant. The pools of DMADP and GDP increased during the season (from May to July) but decreased when the leaf was darkened or exposed to very high temperature. In the dark, the pool of DMADP of the isoprene-emitting species decreased faster than the pool of GDP. However, after 6 h of darkness, both pools were depleted to about 10% of the pool size in illuminated leaves. This indicates that both the chloroplastic and the cytosolic pools of precursors are depleted in the dark. When comparing measurements over the season and at different temperatures, an inverse correlation was observed between isoprene emission by P. alba and the DMADP pool size and between monoterpene emission by Q. ilex and the GDP pool size. This suggests that the pool size does not limit the emission of isoprenoids. Rather, it indicates that the flux of volatile isoprenoids effectively controls the size of their pools of precursors.  相似文献   

20.
Effects of light and temperature on the monoterpenes of peppermint   总被引:10,自引:7,他引:3       下载免费PDF全文
Peppermint (Mentha piperita L.) was grown in a growth chamber under several combinations of temperature and illumination, and the monoterpenes of each leaf pair were analyzed by gas chromatography. Effects on the monoterpenes could be seen in the new leaves after a few days in the growth chamber. Long-day conditions enhanced growth, with a corresponding increase in the total amount of monoterpenes. Either short nights or cool nights, combined with full light intensity during the day, enhanced the formation of menthone and depressed the accumulation of menthofuran and pulegone. Experiments with interrupted night and with low light intensity indicated that photoperiod, as such, does not directly influence the terpene composition. It is suggested that the oxidation-reduction level of the monoterpenes reflects the oxidation-reduction state of the respiratory coenzymes of the terpene-producing cells, and that this, in turn, depends on the concentrations of respiratory substrates in the cells. This suggestion is based on the likelihood that warm nights cause depletion of respiratory substrates, resulting in oxidizing conditions, while cool nights preserve high levels of respiratory substrates, and thus maintain reducing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号