首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang P  Li J  Li X  Liu X  Zhao X  Lu Y 《PloS one》2011,6(12):e27565
The assessment of genetic diversity and population structure of a core collection would benefit to make use of these germplasm as well as applying them in association mapping. The objective of this study were to (1) examine the population structure of a rice core collection; (2) investigate the genetic diversity within and among subgroups of the rice core collection; (3) identify the extent of linkage disequilibrium (LD) of the rice core collection. A rice core collection consisting of 150 varieties which was established from 2260 varieties of Ting's collection of rice germplasm were genotyped with 274 SSR markers and used in this study. Two distinct subgroups (i.e. SG 1 and SG 2) were detected within the entire population by different statistical methods, which is in accordance with the differentiation of indica and japonica rice. MCLUST analysis might be an alternative method to STRUCTURE for population structure analysis. A percentage of 26% of the total markers could detect the population structure as the whole SSR marker set did with similar precision. Gene diversity and MRD between the two subspecies varied considerably across the genome, which might be used to identify candidate genes for the traits under domestication and artificial selection of indica and japonica rice. The percentage of SSR loci pairs in significant (P<0.05) LD is 46.8% in the entire population and the ratio of linked to unlinked loci pairs in LD is 1.06. Across the entire population as well as the subgroups and sub-subgroups, LD decays with genetic distance, indicating that linkage is one main cause of LD. The results of this study would provide valuable information for association mapping using the rice core collection in future.  相似文献   

2.
Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25–50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker–trait association mapping. This new association population has the potential to identify quantitative trait loci (QTL) with small effects, which will aid in dissecting complex traits and in exploiting the rich diversity present in rice germplasm.  相似文献   

3.
Association mapping is a method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, the collection of 108 wheat germplasm accessions form China were evaluated for their plant heights, spike length, spikelets per spike, grains per spike, thousand kernel weight and spikelets density in 3 years at three locations. And they were genotyped with 85 SSR markers and 40 EST-SSR markers. The population structure was inferred on the basis of unlinked 48 SSR markers and 40 EST-SSR markers. The extent of LD on chromosome 2A was 2.3 cM. Association of 37 SSR loci on chromosomes 2A with six agronomic traits was analysed with a mixed linear model. A total of 14 SSR loci were significantly associated with agronomic traits. Some of the associated markers were located in the QTL region detected in previous linkage mapping analysis. Our results demonstrated that association mapping can enhance QTL information and achieves higher resolution with short LD extent.  相似文献   

4.
Seed longevity varies considerably in cultivated rice, but the underlying mechanism of longevity is not well understood. To measure seed longevity, we performed an aging treatment at 45 °C on seeds maintained at 14 % moisture content for 14 days. We measured the percentage germination of both treated and normal seeds at 25 °C as a control of seed longevity using four replications over 2 years. In total, 140 accessions from a core collection with diverse origins were genotyped using 204 SSR markers, which distributed into 12 chromosomes, to identify marker–trait associations with seed longevity. An analysis of the population structure revealed four subgroups. The r 2 values ranged from 0.0 to 0.8901 for all intrachromosomal loci pairs, with an average of 0.0773. Linkage disequilibrium (LD) between linked markers decreased with distance and displayed a substantial drop in LD decay values between 20 and 50 cM. Marker–trait associations were investigated using a mixed linear model approach, considering both population structure (Q) and kinship (K). Twelve marker–trait associations (P < 0.01) were common between the two germination treatments and over the 2-year study, explaining more than 10 % of the total variation. These ten different markers were distributed on five chromosomes. The significant associated SSR markers identified will be useful to seed-bank managers to ensure collections are maintained at high levels of viability to avoid loss of genotypes from the population and for marker-assisted selection.  相似文献   

5.
Information about the extent and genomic distribution of linkage disequilibrium (LD) is of fundamental importance for association mapping. The main objectives of this study were to (1) investigate genetic diversity within germplasm groups of elite European maize (Zea mays L.) inbred lines, (2) examine the population structure of elite European maize germplasm, and (3) determine the extent and genomic distribution of LD between pairs of simple sequence repeat (SSR) markers. We examined genetic diversity and LD in a cross section of European and US elite breeding material comprising 147 inbred lines genotyped with 100 SSR markers. For gene diversity within each group, significant (P<0.05) differences existed among the groups. The LD was significant (P<0.05) for 49% of the SSR marker pairs in the 80 flint lines and for 56% of the SSR marker pairs in the 57 dent lines. The ratio of linked to unlinked loci in LD was 1.1 for both germplasm groups. The high incidence of LD suggests that the extent of LD between SSR markers should allow the detection of marker-phenotype associations in a genome scan. However, our results also indicate that a high proportion of the observed LD is generated by forces, such as relatedness, population stratification, and genetic drift, which cause a high risk of detecting false positives in association mapping.  相似文献   

6.
The genetic diversity, population structure, and linkage disequilibrium (LD) of peaches are greatly important in genome-wide association mapping. In the current study, 104 peach landrace accessions from six Chinese geographical regions were evaluated for fruit and phenological period. The accessions were genotyped with 53 genome-wide simple sequence repeat (SSR) markers. All SSR markers were highly polymorphic across the accessions, and a total of 340 alleles were detected, including 59 private alleles. Of the six regions studied, the northern part of China as well as the middle and lower reaches of the Changjiang River were found to be the most highly diverse genetically. Based on population structure analysis, the peaches were divided into five groups, which well agreed with the geographical distribution. Of the SSR pairs in these accessions, 18.07% (P?<?0.05) were in LD. The mean r 2 value for all intrachromosomal loci pairs was 0.0149, and LD decayed at 6.01?cM. The general linear model was used to calculate the genome-wide marker-trait associations of 10 complex traits. The traits include flesh color around the stone, red pigment in the flesh, flesh texture, flesh adhesion, flesh firmness, fruit weight, chilling requirement, flowering time, ripening time, and fruit development period. These traits were estimated by analyzing the 104 landraces. Many of the associated markers were located in regions where quantitative trait loci (QTLs) were previously identified. Peach association mapping is an effective approach for identifying QTLs and may be an alternative to QTL mapping based on crosses between different lines.  相似文献   

7.
Association mapping of yield and its components in rice cultivars   总被引:10,自引:0,他引:10  
To make advances in rice breeding it is important to understand the relatedness and ancestry of introduced rice accessions, and identify SSR markers associated with agronomically important phenotypic traits, for example yield. Ninety-two rice germplasm accessions recently introduced from seven geographic regions of Africa, Asia, and Latin America, and eleven US cultivars, included as checks, were evaluated for yield and kernel characteristics, and genotyped with 123 SSR markers. The SSR markers were highly polymorphic across all accessions. Population structure analysis identified eight main clusters for the accessions which corresponded to the major geographic regions, indicating agreement between genetic and predefined populations. Linkage disequilibrium (LD) patterns and distributions are of fundamental importance for genome-wide mapping association. LD between linked markers decreased with distance and with a substantial drop in LD decay values between 20 and 30 cM, suggesting it should be possible to achieve resolution down to the 25 cM level. For the 103 cultivars, the complex traits yield, kernel width, kernel length, kernel width/length ratio, and 1000-kernel weight, were estimated by analysis of variety trial data. The mixed linear model method was used to disclose marker-trait associations. Many of the associated markers were located in regions where QTL had previously been identified. In conclusion, association mapping in rice is a viable alternative to QTL mapping based on crosses between different lines.  相似文献   

8.
Mining elite genes within rice landraces is of importance for the improvement of cultivated rice. An association mapping for 12 agronomic traits was carried out using a core collection of rice consisting of 150 landraces (Panel 1) with 274 simple sequence repeat (SSR) markers, and the mapping results were further verified using a Chinese national rice micro-core collection (Panel 2) and a collection from a global molecular breeding program (Panel 3). Our results showed that (1) 76 significant (P<0.05) trait-marker associations were detected using mixed linear model (MLM) within Panel 1 in two years, among which 32% were identical with previously mapped QTLs, and 11 significant associations had >10% explained ratio of genetic variation; (2) A total of seven aforementioned trait-marker associations were verified within Panel 2 and 3 when using a general linear model (GLM) and 55 SSR markers of the 76 significant trait-marker associations. However, no significant trait-marker association was found to be identical within three panels when using the MLM model; (3) several desirable alleles of the loci which showed significant trait-marker associations were identified. The research provided important information for further mining these elite genes within rice landraces and using them for rice breeding.  相似文献   

9.
Developing trait introgressed rice cultivars is essential to sustain yield under aerobic conditions. Here, we report DNA markers governing variability in root traits, water use efficiency (WUE) and other biometric traits like total leaf area by association mapping. A set of 173 diverse rice germplasm accessions were phenotyped for root traits in specially designed root structures and WUE using carbon isotope discrimination (Δ13C) during the monsoon season (July to October) of two consecutive years (2007 and 2008). The panel was genotyped using 291 SSR markers spanning the entire genome of rice. Root biomass varied between 1.8 and 16.3 g plant?1 while root length between 22 and 78 cm representing significant genetic variability. Similarly, Δ13C varied from 18 to 23 ‰. The SSR markers showed extensive polymorphism with around 73 % of all the markers revealing polymorphism information content values more than 0.5. Model-based structure analysis using the squared-allele frequency correlations revealed six subgroups among the panel with an average LD decay of about 10–20 cM. The Benjamini–Hochberg analysis was carried out to compute the false discovery rate combined with the analysis of effective LD. A total of 82 markers were involved in 175 significant (corrected P values and Q values <0.05) marker–trait associations (MTAs) across experiment 1 and experiment 2 and for the pooled data. Out of these, 22 markers were found to be associated with more than one trait. Common markers with significant associations were discovered for root biomass, total leaf area and total biomass suggesting the interdependency of these traits. Finally, 12 markers showed significant and stable MTAs across the experiments for different traits. An in silico analysis indicated that 45 % of the MTAs overlapped with previously reported QTLs and can be used for QTL introgression through breeding.  相似文献   

10.
Association mapping enables the detection of marker-trait associations in unstructured populations by taking advantage of historical linkage disequilibrium (LD) that exists between a marker and the true causative polymorphism of the trait phenotype. Our first objective was to understand the pattern of LD decay in the diploid alfalfa genome. We used 89 highly polymorphic SSR loci in 374 unimproved diploid alfalfa (Medicago sativa L.) genotypes from 120 accessions to infer chromosome-wide patterns of LD. We also sequenced four lignin biosynthesis candidate genes (caffeoyl-CoA 3-O-methyltransferase (CCoAoMT), ferulate-5-hydroxylase (F5H), caffeic acid-O-methyltransferase (COMT), and phenylalanine amonialyase (PAL 1)) to identify single nucleotide polymorphisms (SNPs) and infer within gene estimates of LD. As the second objective of this study, we conducted association mapping for cell wall components and agronomic traits using the SSR markers and SNPs from the four candidate genes. We found very little LD among SSR markers implying limited value for genomewide association studies. In contrast, within gene LD decayed within 300 bp below an r (2) of 0.2 in three of four candidate genes. We identified one SSR and two highly significant SNPs associated with biomass yield. Based on our results, focusing association mapping on candidate gene sequences will be necessary until a dense set of genome-wide markers is available for alfalfa.  相似文献   

11.
Detecting quantity trait locus (QTLs) and elite alleles that are associated with grain-filling rate (GFR) in rice is essential for promoting the utilization of hybrid japonica rice and improving rice yield. Ninety-five varieties including 58 landraces and 37 elite varieties from the core germplasm collection were genotyped with 263 simple sequence repeat (SSR) markers. The GFR of the 95 varieties was evaluated at five stages, 7, 14, 21, 28 and 35 days after flowering (DAF) both in 2011 and 2012. We found abundant phenotypic and genetic diversity in the studied population. A population structure analysis identified seven subpopulations. A linkage disequilibrium (LD) analysis indicated that the levels of LD ranged from 60.3 cM to 84.8 cM and artificial selection had enhanced the LD. A time-course association analysis detected 31 marker-GFR associations involving 24 SSR markers located on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 11 and 12 of rice at five stages. The elite alleles for high GFR at each stage were detected. Fifteen excellent parental combinations were predicted, and the best parental combination ‘Nannongjing62401×Laolaihong’ could theoretically increase 4.086 mg grain-1 d-1 at the five stages. Our results demonstrate that the time-course association mapping for GFR in rice could detect elite alleles at different filling stages and that these elite alleles could be used to improve the GFR via pyramiding breeding.  相似文献   

12.
13.
编码区和非编码区SSR标记对水稻类群的比较研究   总被引:1,自引:0,他引:1  
设计14对水稻编码区SSR引物和选取已公布的非编码区SSR引物12对、编码区SSR引物3对,采用SSR技术,对29个标记在60个水稻材料中的多态性进行分析。结果表明,编码区SSR标记平均检测到3.59个多态性位点,多态信息量PIC(polymorphism information conten)在0.032~P0.853之间,平均值为0.447;非编码区SSR标记平均检测到3.92个多态性位点,PIC在0.063~P0.795之间,平均值为0.521。聚类分析显示,非编码区SSR标记能更加精确地区分来自不同地区的水稻类群,编码区SSR标记也具有良好的多态性,同样可以用于分析水稻的亲缘关系。  相似文献   

14.
Association mapping is based on linkage disequilibrium (LD) resulting from historical recombinations and helps understanding the genetic basis of complex traits. Many factors affect LD and, therefore, it must be determined empirically in the germplasm under investigation to examine the prospects of successful genome-wide association mapping. The objectives of our study were to (1) examine the extent of LD with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in 1,537 commercial maize inbred lines belonging to four heterotic pools, (2) compare the LD patterns determined by these two marker types, (3) evaluate the number of SNP markers needed to perform genome-wide association analyses, and (4) investigate temporal trends of LD. Mean values of the squared correlation coefficient ( $ \bar{R} $ ) were almost identical for unlinked, linked, and adjacent SSR marker pairs. In contrast, $ \bar{R} $ values were lowest for the unlinked SNP loci and highest for the SNPs within amplicons. LD decay varied across the different heterotic pools and the individual chromosomes. The SSR markers employed in the present study are not adequate for association analysis, because of insufficient marker density for the germplasm evaluated. Based on the decay of LD in the various heterotic pools, we would need between 4,000 and 65,000 SNP markers to detect with a reasonable power associations with rather large quantitative trait loci (QTL). A much higher marker density is required to identify QTL with smaller effects. However, not only the total number of markers but also their distribution among and along the chromosomes are primordial for undertaking powerful association analyses.  相似文献   

15.
Application of association mapping to plant breeding populations has the potential to revolutionize plant genetics. The main objectives of this study were to (i) investigate the extent and genomic distribution of linkage disequilibrium (LD) between pairs of amplified fragment length polymorphism (AFLP) markers, (ii) compare these results with those obtained with simple sequence repeat (SSR) markers, and (iii) compare the usefulness of AFLP and SSR markers for genomewide association mapping in plant breeding populations. We examined LD in a cross-section of 72 European elite inbred lines genotyped with 452 AFLP and 93 SSR markers. LD was significant (p < 0.05) for about 15% of the AFLP marker pairs and for about 49% of the SSR marker pairs in each of the two germplasm groups, flint and dent. In both germplasm groups the ratio of linked to unlinked loci pairs in LD was higher for AFLPs than for SSRs. The observation of LD due to linkage for both marker types suggested that genome-wide association mapping should be possible using either AFLPs or SSRs. The results of our study indicated that SSRs should be favored over AFLPs but the opposite applies to populations with a long history of recombination.  相似文献   

16.
Microsatellite or single sequence repeat (SSR) markers have been commonly used in genetic research in many crop species, including common bean (Phaseolus vulgaris L.). A limited number of existing SSR markers have been designed from high-throughput sequencing of the genome, warranting the exploitation of new SSR markers from genomic regions. In this paper, we sequenced total DNA from the genotype Hong Yundou with a 454-FLX pyrosequencer and found numerous SSR loci. Based on these, a large number of SSR markers were developed and 90 genomic-SSR markers with clear bands were tested for mapping and diversity detection. The new SSR markers proved to be highly polymorphic for molecular polymorphism, with an average polymorphism information content value of 0.44 in 131 Chinese genotypes and breeding lines, effective for distinguishing Andean and Mesoamerican genotypes. In addition, we integrated 85 primers of the 90 polymorphism markers into the bean map using an F2 segregating population derived from Hong Yundou crossed with Jingdou. The distribution of SSR markers among 11 chromosomes was not random and tended to cluster on the linkage map, with 14 new markers mapped on chromosome Pv01, whereas only four loci were located on chromosome Pv04. Overall, these new markers have potential for genetic mapping, genetic diversity studies and map-based cloning in common bean.  相似文献   

17.
Understanding the population structure and linkage disequilibrium in an association panel can effectively avoid spurious associations and improve the accuracy in association mapping. In this study, one hundred and fifty eight elite cotton (Gossypium hirsutum L.) germplasm from all over the world, which were genotyped with 212 whole genome-wide marker loci and phenotyped with an disease nursery and greenhouse screening method, were assayed for population structure, linkage disequilibrium, and association mapping of Verticillium wilt resistance. A total of 480 alleles ranging from 2 to 4 per locus were identified from all collections. Model-based analysis identified two groups (G1 and G2) and seven subgroups (G1a–c, G2a–d), and differentiation analysis showed that subgroup having a single origin or pedigree was apt to differentiate with those having a mixed origin. Only 8.12% linked marker pairs showed significant LD (P<0.001) in this association panel. The LD level for linked markers is significantly higher than that for unlinked markers, suggesting that physical linkage strongly influences LD in this panel, and LD level was elevated when the panel was classified into groups and subgroups. The LD decay analysis for several chromosomes showed that different chromosomes showed a notable change in LD decay distances for the same gene pool. Based on the disease nursery and greenhouse environment, 42 marker loci associated with Verticillium wilt resistance were identified through association mapping, which widely were distributed among 15 chromosomes. Among which 10 marker loci were found to be consistent with previously identified QTLs and 32 were new unreported marker loci, and QTL clusters for Verticillium wilt resistanc on Chr.16 were also proved in our study, which was consistent with the strong linkage in this chromosome. Our results would contribute to association mapping and supply the marker candidates for marker-assisted selection of Verticillium wilt resistance in cotton.  相似文献   

18.
Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations are of great importance and the prerequisite for association mapping. In the present study, 145 genome-wide SSR markers were used to assess the genetic diversity, population structure, and LD of a set of 95 maize inbred lines which represented the Chinese maize inbred lines. Results showed that the population included a diverse genetic variation. A model-based population structure analysis subdivided the inbred lines into four subgroups that correspond to the four major empirical germplasm origins in China, i.e., Lancaster, Reid, Tangsipingtou and P. Among all of the inbred lines, 65.3% were assigned into the corresponding subgroups; others were assigned into a “mixed” subgroup. LD was significant at a 0.01 level between 63.89% of the SSR pairs in the entire sample and with a range of 18.75–40.28% in the subgroups. Among factors influencing LD, linkage was the major cause for LD of SSR loci. The results suggested that the population may be used in the detection of genome-wide SSR marker–phenotype association. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. R. Wang and Y. Yu contributed equally to the work.  相似文献   

19.
豌豆种质表型性状SSR标记关联分析   总被引:2,自引:0,他引:2  
关联分析是以连锁不平衡原理为基础,鉴定某一群体内表型性状与遗传标记或候选基因间关系的遗传分析方法。本研究利用59个多态性SSR标记,对192份豌豆种质进行全基因组扫描,以分析SSR位点遗传多样性,寻找其连锁不平衡位点;采用TASSEL软件的一般线性模型,利用59个SSR标记对19个形态性状进行关联分析。结果显示SSR位点间有较高的多态性和一定程度的连锁不平衡,共检测出32个SSR标记位点与14个表形性状相关联,一些SSR标记与2个或多个形态性状相关联。  相似文献   

20.
Linkage analysis is commonly used to find marker-trait associations within the full-sib families of forest tree and other species. Study of marker-trait associations at the population level is termed linkage-disequilibrium (LD) mapping. A female-tester design comprising 200 full-sib families generated by crossing 40 pollen parents with five female parents was used to assess the relationship between the marker-allele frequency classes obtained from parental genotypes at SSR marker loci and the full-sib family performance (average predicted breeding value of two parents) in radiata pine (Pinus radiata D. Don). For alleles (at a marker locus) that showed significant association, the copy number of that allele in the parents was significantly correlated, either positively or negatively, with the full-sib family performance for various economic traits. Regression of parental breeding value on its genotype at marker loci revealed that most of the markers that showed significant association with full-sib family performance were not significantly associated with the parental breeding values. This suggests that over-representation of the female parents in our sample of 200 full-sib families could have biased the process of detecting marker-trait associations. The evidence for the existence of marker-trait LD in the population studied is rather weak and would require further testing. The exact test for genotypic disequilibrium between pairs of linked or unlinked marker loci revealed non-significant LD. Observed genotypic frequencies at several marker loci were significantly different from the expected Hardy-Weinberg equilibrium. The possibilities of utilising marker-trait associations for early selection, among-family selection and selecting parents for the next generation of breeding are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号