首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于18S rDNA序列的蝽次目(半翅目:异翅亚目)   总被引:4,自引:0,他引:4  
利用18SrDNA分子约1 912 bp的序列对蝽次目21个科53个种进行系统发育分析。运用MP法、ML法和NJ法分析后的结果表明:蝽次目的单系性得到很高的支持;扁蝽总科成为毛点类的姐妹群;毛点类基本确定为两大分支:一支包含蝽总科和红蝽总科;另一支主要由长蝽总科、缘蝽总科和南蝽总科组成;长蝽总科和缘蝽总科都是多系;长蝽总科中,跷蝽科和皮蝽科的关系最近,构成姐妹群,位于整个毛点类的基部;与长蝽总科中另外两个科长蝽科和地长蝽科的关系很远。说明利用18SrDNA分子对研究蝽次目的系统发育关系是适合的,能够重建蝽次目;扁蝽总科和蝽总科单系性的结果与形态学的研究以及Li et al (2005)的研究一致;但较Li et al(2005)的研究更进一步把红蝽总科从广义的缘蝽总科中分出来;并建议皮蝽科作为一个独立的总科更合适。  相似文献   

2.
The higher‐level phylogeny of Pentatomomorpha, the second largest infraorder of true bugs (Hemiptera: Heteroptera), which includes many important agriculture and forestry pests, has been debated for decades. To investigate the phylogeny and evolutionary history of Pentatomomorpha, we assembled new mitochondrial genomes for 46 species through next‐generation sequencing of pooled genomic DNA. Based on a much broader taxon sampling than available previously, Bayesian analyses using a site‐heterogeneous mixture model (CAT+GTR) resolved the higher‐level phylogeny of Pentatomomorpha as (Aradoidea + (Pentatomoidea + (Coreoidea + (Lygaeoidea + Pyrrhocoroidea)))). There was a transition from trnT/trnP to trnP/trnT in the common ancestor of Pyrrhocoroidea, which indicates that this gene rearrangement could be an autapomorphy for Pyrrhocoroidea. Divergence time analyses estimated that Pentatomomorpha originated c. 242 Ma in the Middle Triassic, and most of the recognized superfamilies originated during the Middle Jurassic to Early Cretaceous. The diversification of families within Pentatomomorpha largely coincided with the radiation of angiosperms during the Early Cretaceous.  相似文献   

3.
4.
The haemolymph ecdysteroids were examined in fifth-stage larvae of Nezara viridula, Podisus maculiventris and Dysdercus cingulatus (Hemiptera-Heteroptera) using high-pressure liquid chromatography to separate the ecdysteroids and a radioimmunoassay to detect the fractionated ecdysteroids. The length of the fifth stage ranged from 5 to 8 days, and a peak in ecdysteroid titre (1700–2650 ng/ml) occurred 2–3 days prior to ecdysis to the adult. An ecdysteroid matching the retention time of makisterone A (24-methyl-20-hydroxyecdysone) was clearly present in haemolymph taken at the time of peak titre in all 3 of these true bugs, whereas little, if any, ecdysone or 20-hydroxyecdysone was detected. These data, along with previously reported data for the milkweed bug Oncopeltus fasciatus, are persuasive evidence that makisterone A is the larval moulting hormone of a group of closely related Heteroptera called the Trichophora (Lygaeoida, Pentatomoidea, Pyrrhocoroidea and Coreoidea).  相似文献   

5.
To further investigate phylogeny of kinetoplastid protozoa, the sequences of small subunit (18S) ribosomal RNA of nine bodonid isolates and ten isolates of insect trypanosomatids have been determined. The root of the kinetoplastid tree was attached to the branch of Bodo designis and/or Cruzella marina. The suborder Trypanosomatina appeared as a monophyletic group, while the suborder Bodonina was paraphyletic. Among bodonid lineages, parasitic organisms were intermingled with free-living ones, implying multiple transitions to parasitism and supporting the 'vertebrate-first hypothesis'. The tree indicated that the genera Cryptobia and Bodo are artificial taxa. Separation of fish cryptobias and Trypanoplasma borreli as different genera was not supported. In trypanosomatids, the genera Leptomonas and Blastocrithidia were polyphyletic, similar to the genera Herpetomonas and Crithidia and in contrast to the monophyletic genera Trypanosoma and Phytomonas. This analysis has shown that the morphological classification of kinetoplastids does not in general reflect their genetic affinities and needs a revision.  相似文献   

6.
Here we present comparative data on the localization and identity of intracellular symbionts among the superfamily Lygaeoidea (Insecta: Hemiptera: Heteroptera: Pentatomomorpha). Five different lygaeoid species from the families Blissidae and Lygaeidae (sensu stricto; including the subfamilies Lygaeinae and Orsillinae) were analyzed. Fluorescence in situ hybridization (FISH) revealed that all the bugs studied possess paired bacteriomes that are differently shaped in the abdomen and harbor specific endosymbionts therein. The endosymbionts were also detected in female gonads and at the anterior poles of developing eggs, indicating vertical transmission of the endosymbionts via ovarial passage, in contrast to the posthatch symbiont transmission commonly found among pentatomoid bugs (Pentatomomorpha: Pentatomoidea). Phylogenetic analysis based on 16S rRNA and groEL genes showed that the endosymbionts of Ischnodemus sabuleti, Arocatus longiceps, Belonochilus numenius, Orsillus depressus, and Ortholomus punctipennis constitute at least four distinct clades in the Gammaproteobacteria. The endosymbiont phylogeny did not agree with the host phylogeny based on the mitochondrial cytochrome oxidase I (COI) gene, but there was a local cospeciating pattern within the subfamily Orsillinae. Meanwhile, the endosymbiont of Belonochilus numenius (Lygaeidae: Orsillinae), although harbored in paired bacteriomes as in other lygaeoid bugs of the related genera Nysius, Ortholomus, and Orsillus, was phylogenetically close to "Candidatus Rohrkolberia cinguli," the endosymbiont of Chilacis typhae (Lygaeoidea: Artheneidae), suggesting an endosymbiont replacement in this lineage. The diverse endosymbionts and the differently shaped bacteriomes may reflect independent evolutionary origins of the endosymbiotic systems among lygaeoid bugs.  相似文献   

7.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.  相似文献   

8.
目的:初步探讨中国绿水螅(Hydra sinensis)分子系统发生地位以及水螅属内部各类群系统发生关系。方法:采用酚-氯仿法提取中国绿水螅总DNA,扩增线粒体COI和16S r RNA基因片段并进行DNA序列测定,再利用Clustal及MEGA等生物信息学分析软件进行系统发生分析。结果:在本研究重建的所有系统发生树中,中国绿水螅始终与绿水螅Hydra viridissima的不同种群一起构成绿水螅单系群。同时,棕色水螅群的单系性被基于COI基因的NJ树以及基于16S r RNA基因的NJ树和ML树支持,唯独基于COI基因的ML树不支持棕色水螅群的单系发生。在基于COI基因的ML树中纤弱水螅族在系统树的基部独立为一支系,而绿水螅群和其他棕色水螅群水螅一起组成另一支系,提示纤弱水螅族水螅的系统发生地位值得进一步探讨。值得注意的是,根据本文的结果,棕色水螅群内3族的划分仍然有一定疑问。基于COI基因的NJ树和ML树支持普通水螅族、寡水螅族和纤弱水螅族各自族内的单系发生,但16S r RNA基因的NJ树和ML树中仅普通水螅族水螅聚为单系群,而寡水螅族和纤弱水螅族水螅各自并非单系发生。结论:把水螅属划分为绿水螅群及棕色水螅群有一定的合理性,但棕色水螅群内寡水螅族、普通水螅族和纤弱水螅族3族的划分还有待商榷。  相似文献   

9.
Phylogeny of caddisflies (Insecta, Trichoptera)   总被引:2,自引:0,他引:2  
Trichoptera are holometabolous insects with aquatic larvae that, together with the Lepidoptera, comprise the Amphiesmenoptera. Previous phylogenetic hypotheses and progress on our ongoing data collection are summarized. Fragments of the large and small subunit nuclear ribosomal RNAs (D1, D3, V4–5), the nuclear elongation factor 1 alpha gene and a fragment of mitochondrial cytochrome oxidase 1 (COI) were sequenced, and molecular data were combined with previously published morphological data. Equally and differentially weighted parsimony analyses were conducted in order to present a phylogeny of Trichoptera, including 43 of 45 families. Our phylogeny closely resembles that proposed by Herbert Ross with respect to the relationships among suborders, with a monophyletic Annulipalpia at the base of the tree, and a clade consisting of Spicipalpia plus a monophyletic Integripalpia. The monophyly of Spicipalpia is weakly supported in the combined equally weighted analysis, and Spicipalpia is paraphyletic in the differentially weighted analysis. Within Integripalpia, our phylogeny recovered monophyletic Plenitentoria, Brevitentoria and Sericostomatoidea. Leptoceroidea was unresolved in the equally weighted analysis and monophyletic in the differentially weighted analysis. Within Annulipalpia, we recovered a basal but paraphyletic Philopotamoidea and a monophyletic Hydropsychoidea.  相似文献   

10.
The largest suborder of bark lice (Insecta: Psocodea: ‘Psocoptera’) is Psocomorpha, which includes over 3600 described species. We estimated the phylogeny of this major group with family‐level taxon sampling using multiple gene markers, including both nuclear and mitochondrial ribosomal RNA and protein‐coding genes. Monophyly of the suborder was strongly supported, and monophyly of three of four previously recognized infraorders (Caeciliusetae, Epipsocetae, and Psocetae) was also strongly supported. In contrast, monophyly of the infraorder Homilopsocidea was not supported. Based on the phylogeny, we divided Homilopsocidea into three independent infraorders: Archipsocetae, Philotarsetae, and Homilopsocidea. Except for a few cases, previously recognized families were recovered as monophyletic. To establish a classification more congruent with the phylogeny, we synonymized the families Bryopsocidae (with Zelandopsocinae of Pseudocaeciliidae), Calopsocidae (with Pseudocaeciliidae), and Neurostigmatidae (with Epipsocidae). Monophyly of Elipsocidae, Lachesillidae, and Mesopsocidae was not supported, but the monophyly of these families could not be rejected statistically, so they are tentatively maintained as valid families. The molecular tree was compared with a morphological phylogeny estimated previously. Sources of congruence and incongruence exist and the utility of the morphological data for phylogenetic estimation is evaluated. © 2014 The Linnean Society of London  相似文献   

11.
12.
Reactive α,β‐unsaturated aldehydes, including 4‐oxoalk‐2‐enals, are known to be present in volatile secretions of numerous heteropteran insect species. Because the aldehydes are likely to originate from metabolism of fatty acids (FAs), the present study aimed to examine and compare the aldehyde and FA profiles of four model heteropteran species. The model species consisted of adult family group representatives within the infraorder Pentatomomorpha (Hemiptera: Heteroptera): seed bug (Lygaeus equestris (Lygaeoidea)), dock leaf bug (Coreus marginatus (Coreoidea)), red firebug (Pyrrhocoris apterus (Pyrrhocoroidea)), and European stink bug (Graphosoma lineatum (Pentatomoidea)). Solid‐phase microextraction combined with two‐dimensional gas‐chromatography/time‐of‐flight mass spectrometry was used to establish the profiles of volatile secretions in stressed living insects. The FA profiles of acylglyceride and phospholipid fractions deposited in fat body and/or hemolymph were obtained by liquid chromatography/mass spectrometry and gas chromatography with flame ionization detection techniques. Our results based on multivariate statistical analyses of the data imply that volatile secretion blends as well as fat body and/or hemolymph lipid profiles are species specific but the differences in volatile blends between different species do not mirror the changes in corresponding fat body and/or hemolymph lipid profiles of stressed and non‐stressed individuals.  相似文献   

13.
Ichthyobodo necator is an important fish ectoparasite with a broad host and ecological range. A novel method, involving the use of an anesthetic, allowed the collection of large numbers of parasites from the skin and gills of hybrid striped bass (Morone saxatilis male x M. chrysops female). Genomic DNA from these samples was used to amplify and clone the 18S rRNA gene. The 18S rRNA gene was similarly cloned from Bodo caudatus, Bodo edax, Bodo saltans, an unidentified Bodo species, and Dimastigella trypaniformis. The resulting sequences were aligned with other representative kinetoplastid species using pileup and similarities in secondary structure. Phylogenetic relationships within the suborder Bodonina and representatives of the suborder Trypanosomatina were determined using maximum-likelihood statistics. The phylogenetic analyses strongly supported the order Kinetoplastida as a monophyletic assemblage consisting of at least two major lineages. One lineage consisted exclusively of L. necator, indicating that it may represent a new suborder. The second lineage consisted of all other kinetoplastid species. This second lineage appeared to contain at least 8 bodonine sublineages, none of which correlated with currently recognized families. For three sublineages, there was a close correspondence between the 18S phylogeny and the classical taxonomy of Dimastigella, Rhynchobodo, and Rhynchomonas. In contrast, Bodo and Cryptobia were polyphyletic, containing species in two or more sublineages that may represent separate genera.  相似文献   

14.
Heteroptera, the true bugs, are part of the largest clade of non-holometabolous insects, the Hemiptera, and include > 42 000 described species in about 90 families. Despite progress in resolving phylogenetic relationships between and within infraorders since the first combined morphological and molecular analysis published in 1993 (29 taxa, 669 bp, 31 morphological characters), recent hypotheses have relied entirely on molecular data. Weakly supported nodes along the backbone of Heteroptera made these published phylogenies unsuitable for investigations into the evolution of habitats and lifestyles across true bugs. Here we present the first combined morphological and molecular analyses of Heteroptera since 1993, using 135 taxa in 60 families, 4018 aligned bp of ribosomal DNA and 81 morphological characters, and various analytical approaches. The sister-group relationship of the predominantly aquatic Nepomorpha with all remaining Heteroptera is supported in all analyses, and a clade formed by Enicocephalomorpha, Dipsocoromorpha and Gerromorpha in some. All analyses recover Leptopodomorpha + (Cimicomorpha + Pentatomomorpha), mostly with high support. Parsimony- and likelihood-based ancestral state reconstructions of habitats and lifestyles on the combined likelihood phylogeny provide new insights into the evolution of true bugs. The results indicate that aquatic and semi-aquatic true bugs invaded these habitats three times independently from terrestrial habitats in contrast to a recent hypothesis. They further suggest that the most recent common ancestor of Heteroptera was predacious, and that the two large predominantly phytophagous clades (Trichophora and Miroidea) are likely to have derived independently from predatory ancestors. We conclude that by combining morphological and molecular data and employing various analytical methods our analyses have converged on a relatively well-supported hypothesis of heteropteran infraordinal relationships that now requires further testing using phylogenomic and more extensive morphological datasets.  相似文献   

15.
Phylogenetic relationships within the Pentatomoidea are investigated through the coding and analysis of character data derived from morphology and DNA sequences. In total, 135 terminal taxa were investigated, representing most of the major family groups; 84 ingroup taxa are coded for 57 characters in a morphological matrix. As many as 3500 bp of DNA data are adduced for each of 52 terminal taxa, including 44 ingroup taxa, comprising the 18S rRNA, 16S rRNA, 28S rRNA, and COI gene regions. Character data are analysed separately and in the form of a total evidence analysis. Major conclusions of the phylogenetic analysis include: the concept of Urostylididae is restricted to that of earlier authors; the Saileriolinae is raised to family rank and treated as the sister group of all Pentatomoidea exclusive of Urostylididae sensu stricto; a broadly conceived Cydnidae, as recognized by Dolling, 1981 , is not supported; the placement of Thaumastellidae within the Pentatomoidea is affirmed and the taxon is recognized at family rank rather than as a subfamily of Cydnidae, although its exact phylogenetic position within the Pentatomoidea remains equivocal; the Parastrachiinae is treated as also including Dismegistus Amyot & Serville and placed within a broadly conceived Corimelaenidae, the latter group being treated at family rank; the family‐group taxa Dinidoridae and Tessaratomidae probably represent a monophyletic group, but the recognition of monophyletic subgroups will benefit from additional representation in the sequence data set; and the Lestoniidae is treated as the sister group of the Acanthosomatidae. The Acanthosomatidae and Scutelleridae are consistently recovered as monophyletic. The monophyly of the Pentatomidae appears unequivocal, inclusive of the Aphylinae and Cyrtocorinae, on the basis of morphology, the latter two taxa not being represented in the molecular data set. © The Willi Hennig Society 2008.  相似文献   

16.
Within the Polyceridae, Nembrothinae includes some of the most striking and conspicuous sea slugs known, although several features of their biology and phylogenetic relationships remain unknown. This paper reports a phylogenetic analysis based on partial sequences of two mitochondrial genes (cytochrome c oxidase subunit I and 16S rRNA) and morphology for most species included in Nembrothinae. Our phylogenetic reconstructions using both molecular and combined morphological and molecular data support the taxonomic splitting of Nembrothinae into several taxa. Excluding one species (Tambja tentaculata), the monophyly of Roboastra was supported by all the phylogenetic analyses of the combined molecular data. Nembrotha was monophyletic both in the morphological and molecular analyses, always with high support. However, Tambja was recovered as para- or polyphyletic, depending on the analysis performed. Our study also rejects the monophyly of "phanerobranch" dorids based on molecular data.  相似文献   

17.
The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.  相似文献   

18.
应用16S rDNA序列探讨斑腿蝗科的单系性及其亚科的分类地位   总被引:13,自引:2,他引:11  
本文测定了斑腿蝗科10亚科20种蝗虫和其他蝗科3种蝗虫的线粒体16S rDNA部分序列,并从GenBank中下载了15种蝗亚目昆虫的16S rRNA基因相应序列片段。比对后的序列长度是397 bp,其中有196个变异位点,157个简约信息位点,A+T平均含量为71.7%,C+G平均含量为28.3%。以序列差异比值为横坐标,以碱基转换数和颠换数为纵坐标作散点图,结果表明颠换多于转换,且随着差异程度的增加,转换明显出现了饱和。以蚱总科的日本蚱Tetrix japonica和卡尖顶蚱Teredorus carmichaeli作外群,用ME、等权MP、加权MP及贝叶斯法重建系统发生树。分子系统树表明,斑腿蝗科并非是一单系群,该科的切翅蝗亚科与稻蝗亚科也均不是一单系群;卵翅蝗、伪稻蝗和稻蝗三者有很近的亲缘关系;支持将黑蝗亚科和秃蝗亚科合为一个亚科——秃蝗亚科;现行的稻蝗亚科并非一单系群,而是一多系群。分子系统学研究结果和传统的基于形态特征的斑腿蝗科的分类体系有很大的不同。  相似文献   

19.
The phylogenetic relationships of 39 species of Eneopterinae crickets are reconstructed using four molecular markers (16S rRNA, 12S rRNA, cytochrome b, 18S rRNA) and a large morphological data set. Phylogenetic analysis via direct optimisation of DNA sequence data using parsimony as optimality criterion is done for six combinations of weighting parameter sets in a sensitivity analysis. The results are discussed in a twofold purpose: first, in term of significance of the molecular markers for phylogeny reconstruction in Ensifera, as our study represents the first molecular phylogeny performed for this insect suborder at this level of diversity; second, in term of corroboration of a previous phylogeny of Eneopterinae, built on morphological data alone. The four molecular markers all convey phylogenetic signal, although variously distributed on the tree. The monophyly of the subfamily, that of three over five tribes, and of 10 over 13 genera, are recovered. Finally, previous hypotheses on the evolution of acoustic devices and signals in the Eneopterinae clade are briefly tested, and supported, by our new data set.  相似文献   

20.
We used 766 bp of DNA sequence data from the mitochondrial cytochrome oxidase I gene to reconstruct a phylogeny for 39 of 43 Ips species, many of which are economically important bark beetles. The phylogeny was reconstructed using equally weighted and weighted parsimony. In both analyses, peripheral clades were well supported while internal clades were poorly supported. Phylogenetic analysis of translated amino acids produced a poorly resolved tree that was discordant with trees reconstructed with nucleotide sequence data. Two main conclusions are drawn about the monophyly of Ips and traditional systematic groups within Ips. First, Ips is monophyletic only when I. mannsfeldi, I. nobilis, and the concinnus and latidens species groups are excluded. The latidens group, I. mannsfeldi, and I. nobilis form a monophyletic group with 3 Orthotomicus species, while the concinnus group has a more basal position. Second, the majority of the species groups in the current classification for Ips are not monophyletic. European Ips species do not form a monophyletic group, contrary to common usage, and are dispersed on the phylogenetic tree among North American species. These results indicate that a formal systematic revision of Ips is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号