首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nineteen new C2 to C4n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C2 to C4n-alkanes. Cell suspensions of these C2 to C4n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60°C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes.  相似文献   

2.
Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism.  相似文献   

3.
Pseudomonas oleovorans grows on C6 to C12n-alkanes and 1-alkenes. These substrates are oxidized to the corresponding fatty acids, which are oxidized further via the β-oxidation pathway, yielding shorter fatty acids which have lost one or more C2 units. P. oleovorans normally utilizes β-oxidation pathway intermediates for growth, but in this paper we show that the intermediate 3-hydroxy fatty acids can also be polymerized to intracellular poly-(R)-3-hydroxyalkanoates (PHAs) when the medium contains limiting amounts of essential elements, such as nitrogen. The monomer composition of these polyesters is a reflection of the substrates used for growth of P. oleovorans. The largest monomer found in PHAs always contained as many C atoms as did the n-alkane used as a substrate. Monomers which were shorter by one or more C2 units were also observed. Thus, for C-even substrates, only C-even monomers were found, the smallest being (R)-3-hydroxyhexanoate. For C-odd substrates, only C-odd monomers were found, with (R)-3-hydroxyheptanoate as the smallest monomer. 1-Alkenes were also incorporated into PHAs, albeit less efficiently and with lower yields than n-alkanes. These PHAs contained both saturated and unsaturated monomers, apparently because the 1-alkene substrates could be oxidized to carboxylic acids at either the saturated or the unsaturated ends. Up to 55% of the PHA monomers contained terminal double bonds when P. oleovorans was grown on 1-alkenes. The degree of unsaturation of PHAs could be modulated by varying the ratio of alkenes to alkanes in the growth medium. Since 1-alkenes were also shortened before being polymerized, as was the case for n-alkanes, copolymers which varied with respect to both monomer chain length and the percentage of terminal double bonds were formed during nitrogen-limited growth of P. oleovorans on 1-alkenes. Such polymers are expected to be useful for future chemical modifications.  相似文献   

4.
Over 20 new strains of methane-utilizing bacteria were isolated from lake water and soil samples. Cell suspensions of these and of other known strains of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol). The product secondary alcohols accumulated extracellularly. The rate of production of secondary alcohols varied with the organism used for oxidation. The average rate of 2-propanol, 2-butanol, 2-pentanol, and 2-hexanol production was 1.5, 1.0, 0.15, and 0.08 μmol/h per 5.0 mg of protein in cell suspensions, respectively. Secondary alcohols were slowly oxidized further to the corresponding methylketones. Primary alcohols and aldehydes were also detected in low amounts (rate of production were 0.05 to 0.08 μmol/h per 5.0 mg of protein in cell suspensions) as products of n-alkane (propane and butane) oxidation. However, primary alcohols and aldehydes were rapidly metabolized further by cell suspensions. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes to their corresponding secondary alcohols, indicating that the enzymatic system required for oxidation of n-alkanes was induced only during growth on methane. The optimal conditions for in vivo secondary alcohol formation from n-alkanes were investigated in Methylosinus sp. (CRL-15). The rate of 2-propanol and 2-butanol production was linear for the 40-min incubation period and increased directly with cell protein concentration up to 12 mg/ml. The optimal temperature and pH for the production of 2-propanol and 2-butanol were 40°C and pH 7.0. Metalchelating agents inhibited the production of secondary alcohols. The activities for the hydroxylation of n-alkanes in various methylotrophic bacteria were localized in the cell-free particulate fractions precipitated by centrifugation between 10,000 and 40,000 × g. Both oxygen and reduced nicotinamide adenine dinucleotide were required for hydroxylation activity. The metal-chelating agents inhibited hydroxylation of n-alkanes by the particulate fraction, indicating the involvement of a metal-containing enzyme system in the oxidation of n-alkanes. The production of 2-propanol from the corresponding n-alkane by the particulate fraction was inhibited in the presence of methane, suggesting that the subterminal hydroxylation of n-alkanes may be catalyzed by methane monooxygenase.  相似文献   

5.
A bacterial strain capable of assimilating gaseous n-alkanes was newly isolated from activated sludge by enrichment culture technique using n-butane as the sole carbon source. The strain was identified as Pseudomonas butanovora sp. nov. It utilised n-alkanes of C2~C9, primary alcohols and carboxylic acids for growth, but did not utilize sugars and C1 compounds. The cell yields on gaseous n-alkanes, such as ethane, propane and n-butane, were 80% or more. The maximum specific growth rate on n-butane was 0.22 hr?1 at 30°C, pH 7.0. Dried cells of this new isolate grown on n-butane contained 73% pure protein.  相似文献   

6.
The fatty acid pattern in hydrocarbon- and ketone-utilizing bacteria after growth on various substrates was examined. The fatty acid composition of one hydrocarbon-utilizing organism (Mycobacterium sp. strain OFS) was investigated in detail after growth on n-alkanes, 1-alkenes, ketones, and n-alcohols. n-Alkanes shorter than C13 or longer than C17 were not incorporated into cellular fatty acids without some degradation. Strain OFS incorporated C14 to C17 1-alkenes into cellular fatty acids as the ω-monoenoic fatty acid. Methyl ketones were incorporated into strain OFS after removal of one- or two-carbon fragments from the carbonyl end of the molecule. An organism isolated by enrichment on methyl ketones was incapable of n-alkane utilization but could grow on, although not incorporate, ketones or long chain n-alcohols into cellular fatty acids.  相似文献   

7.
The hexane extract of Wyethia mollis contains the n-alkanes C15-C18, C20-C25, C27 and C29. Linoleic acid was the only detectable acidic component. A mass spectral analysis of the wax ester fraction indicated that it was a mixture of homologues, the saturated even-carbon acids n-C16-C30 esterfield with the saturated even-carbon alcohols n-C18-C26. The chloroform extract yielded the known isoflavones santal and 3′-O-methylorobol along with a new lanostane-type triterpene, 22,25-epoxy-lanosta-7:9(11)-dien-3-one. The wide distribution of n-alkanes and the decreased odd-even carbon ratio are consistent with the proposed primitive nature of this plant.  相似文献   

8.
Eleven strains of hydrocarbon-oxidizing bacteria, isolated from oilfields and representing the genera Rhodococcus, Gordonia, Dietzia, and Pseudomonas, were characterized as mesophiles and neutrophiles. Rhodococci were halotolerant microorganisms growing in a media containing up to 15% NaCl. All the strains oxidized n-alkanes of crude oil. An influence of the cultivation temperatures (28 or 45°C) and organic supplements on the degradation of C12-C30 n-alkanes in oxidized oil by two bacterial strains of the genus Pseudomonas was shown. The introduction of acetate, propionate, butyrate, ethanol, and sucrose led mainly to decreased oxidation of petroleum paraffins. At certain cultivation temperatures, the addition of volatile fatty acid salts increased the content of certain n-alkanes in oxidized oil as compared to crude oil.  相似文献   

9.
We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four rumen-cannulated lactating dairy cows receiving four contrasting ryegrass silage treatments that differed in nitrogen fertilization level (45 or 90 kg nitrogen ha−1) and maturity (early or late). Passage kinetics through the gastrointestinal tract were derived from the δ13C (i.e. the ratio 13C:12C) in apparently undigested fecal material. Isotopic enrichment was observed in a wide range of long-chain n-alkanes (C27–C36) and passage kinetics were determined for the most abundant C29, C31 and C33 n-alkanes, for which a sufficiently high response signal was detected by combustion isotope ratio mass spectrometry. Basal diet treatment and carbon chain length of n-alkanes did not affect fractional passage rates from the rumen (K 1) among individual n-alkanes (3.71–3.95%/h). Peak concentration time and transit time showed a quantitatively small, significant (p≤0.002) increase with carbon chain length. K 1 estimates were comparable to those of the 13C labeled digestible dry matter fraction (3.38%/h; r = 0.61 to 0.71; p≤0.012). A literature review has shown that n-alkanes are not fermented by microorganisms in the rumen and affirms no preferential depletion of 13C versus 12C. Our results suggest that 13C labeled n-alkanes can be used as nutrient passage tracers and support the reliability of the δ13C signature of digestible feed nutrients as a tool to measure nutrient-specific passage kinetics.  相似文献   

10.
The antibiotic resistance and lipid composition of rhodococci grown in rich organic media with gaseous or liquidn-alkanes were studied. Hydrocarbon-grown rhodococci exhibited an increased resistance to a wide range of antibiotics (aminoglycosides, linkosamides, macrolides, β-lactams, and aromatic compounds). The enhanced antibiotic resistance of rhodococci grown onn-alkanes correlated with an increased content of total cell lipids (up to 14–28%) and saturated straight-chain fatty acids (C16:0, C18:0, C21:0) and was accompanied by the appearance of cardiolipin and phosphatidylglycerol in cells. These lipid compounds are supposed to promote the formation of nonspecific antibiotic resistance in rhodococci by decreasing the permeability of their cell envelope to antibiotics.  相似文献   

11.
Acinetobacter sp. strain DSM 17874 is capable of utilizing n-alkanes with chain lengths ranging from that of decane (C10H22) to that of tetracontane (C40H82) as a sole carbon source. Two genes encoding AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, have been shown to be involved in the degradation of n-alkanes with chain lengths of from 10 to 20 C atoms in this strain. Here, we describe a novel high-throughput screening method and the screening of a transposon mutant library to identify genes involved in the degradation of n-alkanes with C chain lengths longer than 20, which are solid at 30°C, the optimal growth temperature for Acinetobacter sp. strain DSM 17874. A library consisting of approximately 6,800 Acinetobacter sp. strain DSM 17874 transposon mutants was constructed and screened for mutants unable to grow on dotriacontane (C32H66) while simultaneously showing wild-type growth characteristics on shorter-chain n-alkanes. For 23 such mutants isolated, the genes inactivated by transposon insertion were identified. Targeted inactivation and complementation studies of one of these genes, designated almA and encoding a putative flavin-binding monooxygenase, confirmed its involvement in the strain's metabolism of long-chain n-alkanes. To our knowledge, almA represents the first cloned gene shown to be involved in the bacterial degradation of long-chain n-alkanes of 32 C's and longer. Genes encoding AlmA homologues were also identified in other long-chain n-alkane-degrading Acinetobacter strains.  相似文献   

12.
13.
Substrate specificity in hydrocarbon utilizing microorganisms   总被引:5,自引:0,他引:5  
Three bacteria (designated stram JOB5, 7E4, and 7E1C) isolated from soil by elective culture techniques and capable of growth on a wide variety of hydrocarbons were tested for substrate specificity. Non-proliferating cells of strain JOB5 grown on each of the C1 to CN series of normal ahphatic hydrocarbons were assayed for the capacity to oxidize all the alkanes, alcohols, fatty acids, and methyl-ketones in the homologous series of straight chain compounds. Cells of strain 7E4 grown on the gaseous alkanes (C1 C4) and strain 7E1C grown on propane were tested for the ability to oxidize the C1 to C4 n-alkanes, alcohols, and fatty acids.Contribution from Microbiology, North Carolina Agricultural Experiment Station, Raleigh, North Carolina Published with the approval of the Director of Research as paper No 2395 of the Journal Series.Part of this work was done while the author was associated with the late Dr. Jackson W. Foster, at the University of Texas, Austin.  相似文献   

14.
The carbon source markedly influenced the qualitative and quantitative composition of cellular hydrocarbons in Cladosporium resinae. Total lipid and hydrocarbon content was greater in cells grown on n-alkanes than in cells grown on glucose or glutamic acid. Glucose-grown cells contained a spectrum of aliphatic hydrocarbons from C7 to C36; pristane and n-hexadecane comprised 98% of the total. Cells grown on glutamic acid contained C7 to C23 hydrocarbons; n-tridecane, n-tetradecane, n-hexadecane, and pristane made up 74% of the total. n-Decane-grown cells yielded C8 to C32 compounds, and n-hexadecane (96%) was the major hydrocarbon. Cells grown on individual n-alkanes from C11 to C15 all contained C11 to C28 hydrocarbons, and cells grown on n-hexadecane contained C11 to C32 hydrocarbons. In n-undecane-grown cells, n-hexadecane and pristane made up 92% of the total, but in cells grown on C12 to C16 n-alkanes the major cellular hydrocarbon was the one on which the cells were grown. This suggests that cells cultured on n-alkanes of C12 or longer accumulate n-alkanes prior to oxidizing them.  相似文献   

15.
The epicuticular waxes of the two sorghum varieties Alliance A and SD 102 have been analyzed, after separation of the leaf blades from the sheaths. The major constituents were found to be free fatty acids but small amounts of esters, aldehydes, alcohols, n-alkanes and sterols were also detected. The typical chain lengths of aldehydes, free alcohols and free fatty acids were C28 and C30.  相似文献   

16.
This study provides a preliminary reconstruction of paleoecological and paleoclimatic history over the central Chinese Loess Plateau (CLP) during the last 8.1 Ma based on biomarker records from the earliest of the Chaona stratigraphic section. Throughout the section, we found variations in n-alkane and n-alkan-2-one distributions and dramatic changes in six other biomarker proxies: 1) n-alkanes (C27 + C29)/(C31 + C33) ratios, 2) n-alkanes C27/C31 ratios, 3) CPI (carbon preference index) values for CPI(H)ALK, 4) values for CPI(H)KET, 5) n-alkane mean chain lengths ACL-ALK, and 6) n-alkan-2-ones C29/C31 ratios. The C29 n-alkanes dominate the red clay sediments with little variability, indicating that trees dominated the CLP and that the climate was relatively stable and less variable during the 8.1–2.6 Ma period. In contrast, the C31 n-alkanes dominate the loess–paleosol sediments, and biomarkers vary with relatively greater amplitude and higher frequency, indicating that grasses dominated the CLP and the climate was more arid and variable. These biomarker records chronicle a drying and cooling trend on the CLP since 4 Ma. These records can be further divided into four stages with boundaries around 5.6, 3.8 and 2.6 Ma, indicating that the CLP vegetation and climate experienced four evolutionary phases, broadly consistent with those inferred from other available proxy data.  相似文献   

17.
Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 μmol/h per 5.0 mg of protein in cell suspensions. Primary alcohols and aldehydes were also detected in low amounts as products of n-alkane (propane and butane) oxidation, but were rapidly metabolized further by cell suspensions. The optimal conditions for in vivo methylketone formation from n-alkanes were compared in Methylococcus capsulatus (Texas strain), Methylosinus sp. (CRL-15), and Methylobacterium sp. (CRL-26). The rate of acetone and 2-butanone production was linear for the first 60 min of incubation and directly increased with cell concentration up to 10 mg of protein per ml for all three cultures tested. The optimal temperatures for the production of acetone and 2-butanone were 35°C for Methylosinus trichosporium sp. (CRL-15) and Methylobacterium sp. (CRL-26) and 40°C for Methylcoccus capsulatus (Texas). Metal-chelating agents inhibited the production of methylketones, suggesting the involvement of a metal-containing enzymatic system in the oxidation of n-alkanes to the corresponding methylketones. The soluble crude extracts derived from methane-utilizing bacteria contained an oxidized nicotinamide adenine dinucleotide-dependent dehydrogenase which catalyzed the oxidation of secondary alcohols.  相似文献   

18.
Nicotiana tabacum is the only plant known to synthesise large quantities of anteiso- (3-methyl) alkanes and iso- (2-methyl) alkanes. We investigated the carbon isotope ratios of individual long-chain n-alkanes, anteiso- and iso-alkanes (in the C29-C33 carbon number range) extracted from tobacco grown in chambers under controlled conditions to confirm the pathway used by the tobacco plant to synthesise these particular lipids and to examine whether environmental data are recorded in these compounds. Tobacco was grown under differing temperatures, water availabilities and light intensities in order to control its stable carbon isotope ratios and evaluate isotopic fractionations associated with the synthesis of these particular lipids. The anteiso-alkanes were found to have a predominant even-carbon number distribution (maximising at C32), whereas the iso-alkanes exhibit an odd-carbon number distribution (maximising at C31). Iso-alkanes were relatively more abundant than the anteiso-alkanes and only two anteiso-alkanes (C30 and C32) were observed.The anteiso-alkanes and iso-alkanes were found to be enriched in 13C by 2.8-4.3‰ and 0-1.8‰ compared to the n-alkanes, respectively, consistent with different biosynthetic precursors. The assumed precursor for the odd-carbon-numbered iso-alkanes is iso-butyryl-CoA (a C4 unit derived from valine) followed by subsequent elongation of C2 units and then decarboxylation. The assumed precursor for even-carbon-numbered anteiso-alkanes is α-methylbutyryl-CoA (a C5 unit derived from isoleucine) and subsequent elongation by C2 units followed by decarboxylation. The ratio of carbon atoms derived from α-methylbutyryl-CoA and subsequent C2 units (from malonyl-CoA) is 1:5 for the biosynthesis of a C30anteiso-alkane. The ratio of carbon atoms derived from iso-butyryl-CoA and subsequent C2 units (from malonyl-CoA) is 4:25 for the synthesis of a C29iso-alkane. An order of 13C depletion n-alkanes > iso-alkanes > anteiso-alkanes is evident from compound specific isotope data. This trend can probably be attributed to the ratio of the two different sources of carbon atoms in the final wax components.Higher water availability generally results in more depleted stable carbon isotope ratios due to maximised discrimination during carboxylation, associated with less diffusional limitation. This was confirmed in the present study by compound specific isotope analyses of iso-alkanes, anteiso-alkanes and n-alkane lipids extracted from the tobacco leaves. Likewise, light intensity has been shown to influence plant bulk δ13C in previous studies. The carbon isotope ratios of n-alkanes in tobacco grown under low-light conditions were about 2‰ more depleted in 13C than those of lipids extracted from tobacco grown under elevated light conditions. A similar order of difference is observed for the iso-alkanes and anteiso-alkanes (1.8‰ and 1.9‰, respectively). A negligible depletion in carbon isotope ratios was observed for the iso-alkanes and anteiso-alkanes extracted from tobacco grown under elevated temperatures. These results are consistent with the work of Farquhar [Farquhar, G.D., 1980. Carbon isotope discrimination by plants: effects of carbon dioxide concentration and temperature via the ratio of intercellular and atmospheric CO2 concentrations. In: Pearman, G.I. (Ed.), Carbon Dioxide and Climate: Australian Research. Springer, Berlin, pp. 105-110] where temperature appears to have only a minor effect on plant bulk δ13C.  相似文献   

19.
Cellular fatty acid compositions of Candida tropicalis pK 233 and Candida lipolytica NRRL Y -6795 and the time-course changes during yeast growth were studied using individual n-alkanes of various chain lengths (from C11 to C18) and a mixture of n-alkanes (C11 to C18) as a sole carbon source. Observed relationships of the chain-length of n-alkane substrate to time-course changes and final patterns of the fatty acid compositions of these yeasts, especially those of the cells grown on odd-carbon alkanes, indicated that “intact incorporation mechanism,” that is, accumulation of the fatty acid having the same chain-length as that of the alkane substrate used was predominant in the yeasts cultivated on a longer alkane such as n-heptadecane and n-octadecane. On the other hand, “chain elongation pathway” and “de novo synthesis pathway” following β-oxidation of substrate were simultaneously operative in the cells growing on a relatively shorter alkane such as undecane and dodecane.  相似文献   

20.
Nocardia 107-332, a soil isolate, oxidizes short-chain alkyl-substituted cyclic hydrocarbons to cyclic acids while growing on n-alkanes. Cyclic acids are produced also from relatively long-chain alkyl-substituted cyclics such as n-nonylbenzene or n-dodecylbenzene which alone support growth in a mineral-salts medium. ω-Oxidation of the alkyl substituents is followed by β-oxidation. It is of particular interest that cyclic acids such as cyclohexaneacetic and phenylacetic with C2 residual carboxylic acid substituents are resistant to further oxidation by the nocardia but cyclic acids with C1 or C3 substituents are readily oxidized and utilized for growth.

The specificity of microbial oxidations is demonstrated by the conversion of p-isopropyltoluene (p-cymene) to p-isopropylbenzoic acid in n-alkane, growth-supported nocardia cultures.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号