首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Torulopsis pintolopesii is an indigenous yeast that colonizes the secreting epithelia in the stomachs of mice and rats. A wild-type strain of this microbe was isolated and identified. To attempt to learn characteristics of the yeast that are advantageous to it in colonizing its natural habitat in vivo, we examined some aspects of its nutrition and energy-yielding metabolism and some environmental conditions that influence its growth in vitro. The yeast appeared to be limited in the compounds it can utilize as carbon and nitrogen sources. It grew best at 37 degrees C and did not grow at 23 or 43 degrees C. It grew optimally at neutral pH but could grow aerobically at pH values as low as 2.0 and anaerobically at pH values as low as 3.4. As assessed by measurements of growth rates and yield coefficients, it grew better aerobically than anaerobically. When grown aerobically, it had a cyanide-sensitive system for taking up O(2) and tested positively for cytochrome c oxidase activity. A petite mutant strain isolated from the wild-type strain had a growth rate and yield coefficient when incubated aerobically that were essentially the same as those of the wild-type parent grown anaerobically. Likewise similar to the wild-type parent grown anaerobically, the petite strain, though incubated aerobically, did not take up O(2). Yeast-free mice associated with either the wild-type or the petite mutant strain were colonized at essentially the same rates and to similar final population levels by both strains. The yeast's capacity to respire may be of little advantage to it in its natural environment. By contrast, its abilities to grow best at 37 degrees C and to grow at low pH values are undoubtedly advantageous characteristics in this respect. The limitations in its carbon and nitrogen nutrition are difficult to evaluate as ecological factors in its colonization of the natural habitat.  相似文献   

2.
Torulopsis pintolopesii is an indigenous yeast that colonizes the secreting epithelia in the stomachs of mice and rats. A wild-type strain of this microbe was isolated and identified. To attempt to learn characteristics of the yeast that are advantageous to it in colonizing its natural habitat in vivo, we examined some aspects of its nutrition and energy-yielding metabolism and some environmental conditions that influence its growth in vitro. The yeast appeared to be limited in the compounds it can utilize as carbon and nitrogen sources. It grew best at 37°C and did not grow at 23 or 43°C. It grew optimally at neutral pH but could grow aerobically at pH values as low as 2.0 and anaerobically at pH values as low as 3.4. As assessed by measurements of growth rates and yield coefficients, it grew better aerobically than anaerobically. When grown aerobically, it had a cyanide-sensitive system for taking up O2 and tested positively for cytochrome c oxidase activity. A petite mutant strain isolated from the wild-type strain had a growth rate and yield coefficient when incubated aerobically that were essentially the same as those of the wild-type parent grown anaerobically. Likewise similar to the wild-type parent grown anaerobically, the petite strain, though incubated aerobically, did not take up O2. Yeast-free mice associated with either the wild-type or the petite mutant strain were colonized at essentially the same rates and to similar final population levels by both strains. The yeast's capacity to respire may be of little advantage to it in its natural environment. By contrast, its abilities to grow best at 37°C and to grow at low pH values are undoubtedly advantageous characteristics in this respect. The limitations in its carbon and nitrogen nutrition are difficult to evaluate as ecological factors in its colonization of the natural habitat.  相似文献   

3.
F H Grau 《Applied microbiology》1981,42(6):1043-1050
At 5 degrees C four strains of fermentative, gram-negative bacteria (Serratia liquefaciens, Yersinia enterocolitica, Enterobacter cloacae, and Aeromonas hydrophila) grew aerobically and anaerobically on adipose tissue removed from beef muscle of low pH (5.4 to 5.6). All four strains also grew aerobically and anaerobically on muscle tissue of high pH (6.0 to 6.3). However, none of the four grew anaerobically on beef muscle of low pH, and the aeromonad strain also failed to grow aerobically on such muscle. Growth of S. liquefaciens and E.cloacae on vacuum-packaged beef muscle was dependent on the pH of the tissue and the oxygen transmission rate of the packaging film. Although the four strains grew in broth buffered at pH 5.55, L-lactate, at the concentration found in muscle of low pH (ca. 100 mM), prevented anaerobic growth of all four isolates and prevented the aerobic growth of th aeromonad. At pH 6.1 in buffered broth, the concentration of L-lactate occurring in muscle of high pH did not prevent aerobic or anaerobic growth of any of the strains.  相似文献   

4.
Three obligately heterotrophic bacterial isolates were identified as strains of a proposed novel species of extremely acidophilic, mesophilic Alphaproteobacteria, Acidocella aromatica. They utilized a restricted range of organic substrates, which included fructose (but none of the other monosaccharides tested), acetate and several aromatic compounds (benzoate, benzyl alcohol and phenol). No growth was obtained on complex organic substrates, such as yeast extract and tryptone. Tolerance of the proposed type strain of the species (PFBC) to acetic acid was much greater than that typically reported for acidophiles. The bacteria grew aerobically, and catalyzed the dissimilatory reductive dissolution of the ferric iron mineral schwertmannite under both micro-aerobic and anaerobic conditions. Strain PFBC did not grow anaerobically via ferric iron respiration, though it has been reported to grow in co-culture with acid-tolerant sulfidogenic bacteria under strictly anoxic conditions. Tolerance of strains of Acidocella aromatica to nickel were about two orders of magnitude greater than those of other Acidocella spp., though similar levels of tolerance to other metals tested was observed. The use of this novel acidophile in solid media designed to promote the isolation and growth of other (aerobic and anaerobic) acidophilic heterotrophs is discussed.  相似文献   

5.
Recently it has been observed that multicopper oxidases are present in a number of microbial genomes, raising the question of their function in prokaryotes. Here we describe the analysis of an mco mutant from the opportunistic pathogen Pseudomonas aeruginosa. Unlike wild-type Pseudomonas aeruginosa, the mco mutant was unable to grow aerobically on minimal media with Fe(II) as sole iron source. In contrast, both the wild-type and mutant strain were able to grow either anaerobically via denitrification with Fe(II) or aerobically with Fe(III). Analysis of iron uptake showed that the mco mutant was impaired in Fe(II) uptake but unaffected in Fe(III) uptake. Purification and analysis of the MCO protein confirmed ferroxidase activity. Taken together, these data show that the mco gene encodes a multicopper oxidase that is involved in the oxidation of Fe(II) to Fe(III) subsequent to its acquisition by the cell. In view of the widespread distribution of the mco gene in bacteria, it is suggested that an iron acquisition mechanism involving multicopper oxidases may be an important and hitherto unrecognized feature of bacterial pathogenicity.  相似文献   

6.
EnterohemorrhagicEscherichia coli O157H7 produces visibly slimy colonies when grown on Sorbitol/MacConkey or Maloney's agar plates at room temperature, indicative of exopolysaccharide (EPS) production. Eighteen of 27 (67%) wild-typeE. coli O157H7 isolates produced enough EPS to be visually distinguishable. Of five strains that showed no visible EPS production on these media, four (80%) did produce slimy colonies on media containing higher salt concentrations. Measurements of EPS production by colorimetric determination of uronic acid indicated that EPS production was affected by growth temperature, atmosphere, and medium. Wild-typeE. coli O157H7 strain 932 produced the greatest amounts of EPS when grown anaerobically at 37°C, whereas its plasmid-cured derivative 932P produced large quantities of EPS when grown aerobically at room temperature. Electron micrographs revealed thin, flexible fibers extending from the bacterial cell surface. Cells of strain 932P grown aerobically at room temperature were completely encased in a thick EPS matrix. Chemical analysis of purified EPS revealed that it is very similar or identical to colanic acid.E. coli O157H7 adheres better to INT 407 cells when grown under conditions that favor high EPS production than when grown under conditions that repress EPS production.  相似文献   

7.
SYNOPSIS. Inhibitors, acid production, and substrate utilization by 4 strains of Tritrichmonas foetus (BP-3, BP-4, A-1, and A-2) were studied manometrically. All used glucose, galactose, mannose, fructose, sucrose, maltose, trehalose, glycogen, starch, lactate, and pyruvate. Strain A-1, with the highest aerobic and anaerobic endogenous rates, used these substrates less than did the others. Strain BP-3 did not use lactose; strains BP-4 and A-2 did not use raffinose aerobically and only slightly anaerobically; strain A-1 used both nearly as well as maltose and sucrose. All were strongly inhibited by iodoacetate and, if tested in the presence of glucose, aerobically or anaerobically, by fluoride, arsenite, hydroxylamine, and 8-hydroxyquinoline. Aerobically, 2,4-dinitrophenol produced stimulation which was greater in the presence of glucose; anaerobically, it produced inhibition which was, in some cases, comparable to the effects produced by the other inhibitors. Fluoride, arsenite, azide, and hydroxylamine, although producing insignificant inhibitory effects on endogenous O2 consumption, reduced and, in some cases, abolished motility of all strains. All 4 strains produced acid under anaerobic and aerobic conditions; strain A-1 produced more than the others. Lactic acid accounted for 30–51% of the acid produced in all strains.
Strain A-1 more closely resembled the nasal trichomonad of swine (strain PN-610) than did strain BP-1. (Doran(3)). The writer believes that the swine nasal strain is a highly adapted strain of T. foetus.  相似文献   

8.
Detached cowpea nodules that contained a nitrous oxide reductase-positive (Nor) rhizobium strain (8A55) and a nitrous oxide reductase-negative (Nor) rhizobium strain (32H1) were incubated with 1% N(2)O (95 atom% N) in the following three atmospheres: (i) aerobic with C(2)H(2) (10%), (ii) aerobic without C(2)H(2), and (iii) anaerobic (argon atmosphere) without C(2)H(2). The greatest production of N(2) occurred anaerobically with 8A55, yet very little was formed with 32H1. Although acetylene reduction activity was slightly higher with 32H1, about 10 times more N(2) was produced aerobically by 8A55 than by 32H1 in the absence of acetylene. The major reductive pathway of N(2)O reduction by denitrifying rhizobium strain 8A55 is by nitrous oxide reductase rather than nitrogenase.  相似文献   

9.
The ability of bacterial cultures to degrade diethanolamine under anoxic conditions with nitrate as an electron acceptor was investigated. A mixed culture capable of anaerobic degradation of diethanolamine was obtained from river sediments by enrichment culture. From this a single bacterial strain was isolated which could use diethanolamine, monoethanolamine, triethanolamine and N-methyl diethanolamine as its sole carbon and energy sources either aerobically or anaerobically. Growth on diethanolamine was faster in the absence of oxygen. The accumulation of possible metabolites in the culture medium was determined as was the ability to grow on certain putative intermediates in the degradation of diethanolamine. A possible pathway for the degradation of ethanolamines by this organism is suggested.  相似文献   

10.
The ability of bacterial cultures to degrade diethanolamine under anoxic conditions with nitrate as an electron acceptor was investigated. A mixed culture capable of anaerobic degradation of diethanolamine was obtained from river sediments by enrichment culture. From this a single bacterial strain was isolated which could use diethanolamine, monoethanolamine, triethanolamine and N-methyl diethanolamine as its sole carbon and energy sources either aerobically or anaerobically. Growth on diethanolamine was faster in the absence of oxygen. The accumulation of possible metabolites in the culture medium was determined as was the ability to grow on certain putative intermediates in the degradation of diethanolamine. A possible pathway for the degradation of ethanolamines by this organism is suggested.  相似文献   

11.
D B Drucker  L F Gibson 《Microbios》1982,33(132):93-100
Streptococcus faecalis 251 was cultured under a variety of different growth conditions, i.e. incubation for 24 or 70 h; at 22 degrees, 37 degrees or 45 degrees C; on blood agar or on MacConkey agar plates; aerobically or anaerobically. Replicate cultures were analysed by pyrolysis-gas liquid chromatography on columns of 7% Carbowax 2 M, TPA on Chromosorb G (AW-DMCS, 80-100 mesh) programmed from 40 degrees C up to 170 degrees C. Culture grown under identical conditions resulted in reproducible pyrochromatograms which were only slightly modified by change in temperature of growth from 37 degrees to 45 degrees C, or length of growth from 24 to 70 h, or growth on MacConkey agar instead of blood agar. Growth under anaerobic conditions resulted in a modified pyrochromatogram; while growth at only 22 degrees C resulted in a major change in pyrochromatogram.  相似文献   

12.
Denitrification by Paracoccus denitrificans and Pseudomonas aeruginosa was studied using quadrupole membrane-inlet mass spectrometry to measure simultaneously and continuously dissolved gases. Evidence was provided for aerobic denitrification by both species: in the presence of O2, N2O production increased in Pa. denitrificans, while that of N2 decreased; with Ps. aeruginosa, the concentrations of both N2 and N2O increased on introducing O2 into the gas phase. Disappearance of NO-3 was monitored in anaerobically and aerobically grown cells which were maintained either anaerobically or aerobically: the rate and extent of NO-3 utilization by both species depended on growth and maintenance conditions. The initial rate of disappearance was most rapid under completely anaerobic conditions, and lowest rates occurred when cells were grown anaerobically and maintained aerobically. In nitrogen balance experiments both species converted over 87% of the added NO-3 to N2 and N2O under both anaerobic and aerobic maintenance conditions.  相似文献   

13.
In Escherichia coli, isochorismate is a common precursor for the biosynthesis of the siderophore enterobactin and menaquinone (vitamin K2). Isochorismate is formed by the shikimate pathway from chorismate by the enzyme isochorismate synthase encoded by the entC gene. Since enterobactin is involved in the aerobic assimilation of iron, and menaquinone is involved in anaerobic electron transport, we investigated the regulation of entC by iron and oxygen. An operon fusion between entC with its associated regulatory region and lacZ+ was constructed and introduced into the chromosome in a single copy. Expression of entC-lacZ was found to be regulated by the concentration of iron both aerobically and anaerobically. An established entC::kan mutant deficient in enterobactin biosynthesis was found to grow normally and synthesize wild-type levels of menaquinone under anaerobic conditions in iron-sufficient media. These results led to the demonstration of an alternate isochorismate synthase specifically involved in menaquinone synthesis encoded by the menF gene. Consistent with these findings, the entC+ strains were found to synthesize enterobactin anaerobically under iron-deficient conditions while the ent mutants failed to do so.  相似文献   

14.
A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.  相似文献   

15.
Forty-four strains of a phenotypically unique Campylobacter were isolated from the faeces of 26 of 45 cows in a single herd. Isolation involved enrichment and membrane filtration onto blood agar or plating onto cefoperazone amphotericin teicoplanin agar. The strains exhibited phenotypic characteristics typical for Campylobacter species. However, they were unusual in that they produced urease and copious H2S in triple sugar iron (TSI) medium, but did not produce catalase. They did not grow aerobically. None of the strains grew on modified cefoperazone charcoal deoxycholate agar (mCCDA). Macrorestriction profiles of chromosomal DNA were prepared for 15 strains using pulsed-field gel electrophoresis (PFGE). Twelve of 15 profiles were identical and all appeared to be closely related. These catalase-negative, urease-positive campylobacters (CNUPC) represent a group not previously reported. Their sensitivity to antibiotics normally used in selective media for campylobacters might explain why they have not previously been encountered. Their ecological significance and importance with respect to human and animal disease remain to be assessed.  相似文献   

16.
Commercial fermented 0sausages that contained significant numbers of viable coagulase-positive staphylococci were found to have the growth localized in the outermost areas of the sausage where oxygen tension was highest. Staphylococci were found to be more acid-tolerant aerobically than anaerobically. With chemical acidulation of sausage, growth could be controlled both aerobically and anaerobically with approximately 1.5% glucono delta lactone. Biological acidulation with a high inoculum of Pediococcus cerevisiae inhibited anaerobic staphylococcal growth but failed to suppress aerobic growth completely. A staphylococcal count of approximately 4 × 107 cells/g of sausage appeared to be necessary to produce detectable enterotoxin A within 24 hr in sausage. A minor difference existed in the relative rates of production of the different types of enterotoxin. Detectable enterotoxin A was produced in 24 hr in sausage held in atmospheres containing 10, 15, and 20% oxygen. In an atmosphere containing 5% oxygen, toxin was detected after 48 hr of incubation. No toxin was detected after 120 hr under anaerobic conditions. Most staphylococcal strains tested initiated growth and produced detectable enterotoxin aerobically at a pH of 5.1 in broth media. Anaerobically, however, most strains failed to produce detectable enterotoxin below pH 5.7.  相似文献   

17.
Wild-type strains of Escherichia coli K-12 do not grow anaerobically on trehalose or galactose. We isolated two operon fusion mutants of E. coli which gained the ability to grow on trehalose anaerobically (tan). The tanA-lac mutation was located at 41 min on the E. coli genetic map and also abolished growth on glucuronic acid both aerobically and anaerobically. The tanB-lac mutation was mapped to 68 min and permitted anaerobic growth on galactose as well as trehalose. The tanB-lac fusion was induced anaerobically whereas tanA-lac showed more or less constitutive beta-galactosidase expression.  相似文献   

18.
The present study was designed to evaluate cycloheximide as a potential media amendment to prevent fungal overgrowth on selective media for salmonellae enumeration. The objectives were to determine the effect of cycloheximide on Salmonella spp growth rates and to determine the effect of cycloheximide addition on Salmonella enumeration in selective media. The bacteria tested included two strains of Salmonella typhimurium (NO/NA and LT2) and one strain of Salmonella arizonae. All strains were grown in tryptic soy broth containing cycloheximide to determine the effect of cycloheximide on bacterial specific growth rates. The growth rate of all strains grown in tryptic soy broth were not significantly influenced by addition of cycloheximide at concentrations up to 1,000 mg/L. Growth rates of S. typhimurium NO/NA in minimal media were significantly decreased by addition of cycloheximide aerobically (300 mg/L) and anaerobically (600 mg/L). However, S. typhimurium NO/NA populations on brilliant green agar, MacConkey agar, and from selenite cysteine broth and tetrathionate broth were not affected by cycloheximide additions at concentrations up to 1,000 mg/L. Cycloheximide has potential as a fungistat additive for salmonellae selective media.  相似文献   

19.
1. Cells of Nitrosomonas europaea produced N(2)O during the oxidation of ammonia and hydroxylamine. 2. The end-product of ammonia oxidation, nitrite, was the predominant source of N(2)O in cells. 3. Cells also produced N(2)O, but not N(2) gas, by the reduction of nitrite under anaerobic conditions. 4. Hydroxylamine was oxidized by cell-free extracts to yield nitrite and N(2)O aerobically, but to yield N(2)O and NO anaerobically. 5. Cell extracts reduced nitrite both aerobically and anaerobically to NO and N(2)O with hydroxylamine as an electron donor. 6. The relative amounts of NO and N(2)O produced during hydroxylamine oxidation and/or nitrite reduction are dependent on the type of artificial electron acceptor utilized. 7. Partially purified hydroxylamine oxidase retained nitrite reductase activity but cytochrome oxidase was absent. 8. There is a close association of hydroxylamine oxidase and nitrite reductase activities in purified preparations.  相似文献   

20.
Summary Insertion of the fusion-generating phage Mud1 (Ap, lacZ) yielded two similar isolates, DC511 and DC512, which were unable to grow aerobically on acetate or alphaketoglutarate but which could use succinate, malate, fumarate, glycerol, and various sugars. These mutants were unable to grow anaerobically on most sugars unless provided with methionine, lysine, and delta-aminolevulinic acid, all of which require succinyl-CoA for their synthesis. The insertions of both mutants mapped at 17 min, in the suc operon. Enzyme assays indicated a lack of succinyl-CoA synthetase; however, full activity of the alpha-ketoglutarate dehydrogenase was retained. Beta-galactosidase expression by strains containing these gene fusions was reduced under anaerobic conditions. In aerobically grown cultures, both fusions were induced about fivefold in the presence of acetate. This type of regulation would be expected of a Krebs cycle enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号