首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
CD8(+) T lymphocytes (T(CD8)) responding to subdominant epitopes provide alternate targets for the immunotherapy of cancer, particularly when self-tolerance limits the response to immunodominant epitopes. However, the mechanisms that promote T(CD8) subdominance to tumor Ags remain obscure. We investigated the basis for the lack of priming against a subdominant tumor epitope following immunization of C57BL/6 (B6) mice with SV40 large tumor Ag (T Ag)-transformed cells. Immunization of B6 mice with wild-type T Ag-transformed cells primes T(CD8) specific for three immunodominant T Ag epitopes (epitopes I, II/III, and IV) but fails to induce T(CD8) specific for the subdominant T Ag epitope V. Using adoptively transferred T(CD8) from epitope V-specific TCR transgenic mice and immunization with T Ag-transformed cells, we demonstrate that the subdominant epitope V is weakly cross-presented relative to immunodominant epitopes derived from the same protein Ag. Priming of naive epitope V-specific TCR transgenic T(CD8) in B6 mice required cross-presentation by host APC. However, robust expansion of these T(CD8) required additional direct presentation of the subdominant epitope by T Ag-transformed cells and was only significant following immunization with T Ag-expressing cells lacking the immunodominant epitopes. These results indicate that limited cross-presentation coupled with competition by immunodominant epitope-specific T(CD8) contributes to the subdominant nature of a tumor-specific epitope. This finding has implications for vaccination strategies targeting T(CD8) responses to cancer.  相似文献   

2.
Generating broad cellular immune responses against a diversity of viral epitopes is a major goal of current vaccine strategies for human immunodeficiency virus type 1 (HIV-1) and other pathogens. Virus-specific CD8(+) T-lymphocyte responses, however, are often highly focused on a very limited number of immunodominant epitopes. For an HIV-1 vaccine, the breadth of CD8(+) T-lymphocyte responses may prove to be critical as a result of the need to cover a wide diversity of viral isolates in the population and to limit viral escape from dominant epitope-specific T lymphocytes. Here we show that epitope modification strategies can alter CD8(+) T-lymphocyte epitope immunodominance hierarchies elicited by a DNA vaccine in mice. Mice immunized with a DNA vaccine expressing simian immunodeficiency virus Gag lacking the dominant D(b)-restricted AL11 epitope generated a marked and durable augmentation of responses specific for the subdominant D(b)-restricted KV9 epitope. Moreover, anatomic separation strategies and heterologous prime-boost regimens generated codominant responses against both epitopes. These data demonstrate that dominant epitopes can dramatically suppress the immunogenicity of subdominant epitopes in the context of gene-based vaccines and that epitope modification strategies can be utilized to enhance responses to subdominant epitopes.  相似文献   

3.
CTL are important in controlling HIV and SIV infection. To quantify cellular immune responses induced by immunization, CD8(+) T cells specific for the subdominant Env p15m and p54m epitopes and/or the dominant Gag p11C epitope were evaluated by tetramer staining in nine macaques immunized with an adenovirus (Ad) 5 host range mutant (Ad5hr)-SIVenv/rev recombinant and in four of nine which also received an Ad5hr-SIVgag recombinant. Two Ad5hr-SIV recombinant priming immunizations were followed by two boosts with gp120 protein or an envelope polypeptide representing the CD4 binding domain. Two mock-immunized macaques served as controls. IFN-gamma-secreting cells were also assessed by ELISPOT assay using p11C, p15m, and p54m peptide stimuli and overlapping pooled Gag and Env peptides. As shown by tetramer staining, Ad-recombinant priming elicited a high frequency of persistent CD8(+) T cells able to recognize p11C, p15m, and p54m epitopes. The presence of memory cells 38 wk postinitial immunization was confirmed by expansion of tetramer-positive CD8(+) T cells following in vitro stimulation. The SIV-specific CD8(+) T cells elicited were functional and secreted IFN-gamma in response to SIV peptide stimuli. Although the level and frequency of response of peripheral blood CD8(+) T cells to the subdominant Env epitopes were not as great as those to the dominant p11C epitope, elevated responses were observed when lymph node CD8(+) T cells were evaluated. Our data confirm the potency and persistence of functional cellular immune responses elicited by replication competent Ad-recombinant priming. The cellular immunity elicited is broad and extends to subdominant epitopes.  相似文献   

4.
During adaptive immune response, pathogen-specific CD8(+) T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+) T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+) T cells of H-2(a) infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+) T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+) T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.  相似文献   

5.
Polymorphism of immunodominant CD8(+) T cell epitopes can facilitate escape from immune recognition of pathogens, leading to strain-specific immunity. In this study, we examined the TCR β-chain (TRB) diversity of the CD8(+) T cell responses of cattle against two immunodominant epitopes from Theileria parva (Tp1(214-224) and Tp2(49-59)) and investigated the role of TCR recognition and MHC binding in determining differential recognition of a series of natural variants of the highly polymorphic Tp2(49-59) epitope by CD8(+) T cell clones of defined TRB genotype. Our results show that both Tp1(214-224) and Tp2(49-59) elicited CD8(+) T cell responses using diverse TRB repertoires that showed a high level of stability following repeated pathogenic challenge over a 3-y period. Analysis of single-alanine substituted versions of the Tp2(49-59) peptide demonstrated that Tp2(49-59)-specific clonotypes had a broad range of fine specificities for the epitope. Despite this diversity, all natural variants exhibited partial or total escape from immune recognition, which was predominantly due to abrogation of TCR recognition, with mutation resulting in loss of the lysine residue at P8, playing a particularly dominant role in escape. The levels of heterozygosity in individual Tp2(49-59) residues correlated closely with loss of immune recognition, suggesting that immune selection has contributed to epitope polymorphism.  相似文献   

6.
Escape from the CD8(+) T cell response through epitope mutations can lead to loss of immune control of HIV replication. Theoretically, escape from CD8(+) T cell recognition is less likely when multiple TCRs target individual MHC/peptide complexes, thereby increasing the chance that amino acid changes in the epitope could be tolerated. We studied the CD8(+) T cell response to six immunodominant epitopes in five HIV-infected subjects using a novel approach combining peptide stimulation, cell surface cytokine capture, flow cytometric sorting, anchored RT-PCR, and real-time quantitative clonotypic TCR tracking. We found marked variability in the number of clonotypes targeting individual epitopes. One subject recognized a single epitope with six clonotypes, most of which were able to recognize and lyse cells expressing a major epitope variant that arose. Additionally, multiple clonotypes remained expanded during the course of infection, irrespective of epitope variant frequency. Thus, CD8(+) T cells comprising multiple TCR clonotypes may expand in vivo in response to individual epitopes, and may increase the ability of the response to recognize virus escape mutants.  相似文献   

7.
Subdominant CD8(+) T-cell responses contribute to control of several viral infections and to vaccine-induced immunity. Here, using the lymphocytic choriomeningitis virus model, we demonstrate that subdominant epitopes can be more reliably identified by DNA immunization than by other methods, permitting the identification, in the virus nucleoprotein, of two overlapping subdominant epitopes: one presented by L(d) and the other presented by K(d). This subdominant sequence confers immunity as effective as that induced by the dominant epitope, against which >90% of the antiviral CD8(+) T cells are normally directed. We compare the kinetics of the dominant and subdominant responses after vaccination with those following subsequent viral infection. The dominant CD8(+) response expands more rapidly than the subdominant responses, but after virus infection is cleared, mice which had been immunized with the "dominant" vaccine have a pool of memory T cells focused almost entirely upon the dominant epitope. In contrast, after virus infection, mice which had been immunized with the "subdominant" vaccine retain both dominant and subdominant memory cells. During the acute phase of the immune response, the acquisition of cytokine responsiveness by subdominant CD8(+) T cells precedes their development of lytic activity. Furthermore, in both dominant and subdominant populations, lytic activity declines more rapidly than cytokine responsiveness. Thus, the lysis(low)-cytokine(competent) phenotype associated with most memory CD8(+) T cells appears to develop soon after antigen clearance. Finally, lytic activity differs among CD8(+) T-cell populations with different epitope specificities, suggesting that vaccines can be designed to selectively induce CD8(+) T cells with distinct functional attributes.  相似文献   

8.
The phenomenon whereby the host immune system responds to only a few of the many possible epitopes in a foreign protein is termed immunodominance. Immunodominance occurs not only during microbial infection but also following vaccination, and clarification of the underlying mechanism may permit the rational design of vaccines which can circumvent immunodominance, thereby inducing responses to all epitopes, dominant and subdominant. Here, we show that immunodominance affects DNA vaccines and that the effects can be avoided by the simple expedient of epitope separation. DNA vaccines encoding isolated dominant and subdominant epitopes induce equivalent responses, confirming a previous demonstration that coexpression of dominant and subdominant epitopes on the same antigen-presenting cell (APC) is central to immunodominance. We conclude that multiepitope DNA vaccines should comprise a cocktail of plasmids, each with its own epitope, to allow maximal epitope dispersal among APCs. In addition, we demonstrate that subdominant responses are actively suppressed by dominant CD8(+) T-cell responses and that gamma interferon (IFN-gamma) is required for this suppression. Furthermore, priming of CD8(+) T cells to a single dominant epitope results in strong suppression of responses to other normally dominant epitopes in immunocompetent mice, in effect rendering these epitopes subdominant; however, responses to these epitopes are increased 6- to 20-fold in mice lacking IFN-gamma. We suggest that, in agreement with our previous observations, IFN-gamma secretion by CD8(+) T cells is highly localized, and we propose that its immunosuppressive effect is focused on the APC with which the dominant CD8(+) T cell is in contact.  相似文献   

9.
Dominant epitope-specific CD8(+) T-lymphocyte responses play a central role in controlling viral spread. We explored the basis for the development of this focused immune response in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys through the use of two dominant (p11C and p199RY) and two subdominant (p68A and p56A) epitopes. Using real-time PCR to quantitate T-cell receptor (TCR) variable region beta (Vbeta) family usage, we show that CD8(+) T-lymphocyte populations specific for dominant epitopes are characterized by a diverse Vbeta repertoire, whereas those specific for subdominant epitopes employ a dramatically more focused Vbeta repertoire. We also demonstrate that dominant epitope-specific CD8(+) T lymphocytes employ TCRs with multiple CDR3 lengths, whereas subdominant epitope-specific cells employ TCRs with a more restricted CDR3 length. Thus, the relative dominance of an epitope-specific CD8(+) T-lymphocyte response reflects the clonal diversity of that response. These findings suggest that the limited clonal repertoire of subdominant epitope-specific CD8(+) T-lymphocyte populations may limit the ability of these epitope-specific T-lymphocyte populations to expand and therefore limit the ability of these cell populations to contribute to the control of viral replication.  相似文献   

10.
HSV type 1 (HSV-1) expresses its genes sequentially as immediate early (α), early (β), leaky late (γ1), and true late (γ2), where viral DNA synthesis is an absolute prerequisite only for γ2 gene expression. The γ1 protein glycoprotein B (gB) contains a strongly immunodominant CD8(+) T cell epitope (gB(498-505)) that is recognized by 50% of both the CD8(+) effector T cells in acutely infected trigeminal ganglia (TG) and the CD8(+) memory T cells in latently infected TG. Of 376 predicted HSV-1 CD8(+) T cell epitopes in C57BL/6 mice, 19 (gB(498-505) and 18 subdominant epitopes) stimulated CD8(+) T cells in the spleens and TG of HSV-1 acutely infected mice. These 19 epitopes identified virtually all CD8(+) T cells in the infected TG that represent all or the vast majority of the HSV-specific CD8(+) TCR repertoire. Only 11 of ~84 HSV-1 proteins are recognized by CD8(+) T cells, and most (~80%) are expressed before viral DNA synthesis. Neither the immunodominance of gB(498-505) nor the dominance hierarchy of the subdominant epitopes is due solely to MHC or TCR affinity. We conclude that the vast majority of CD8(+) T cells in HSV-1 acutely infected TG are HSV specific, that HSV-1 β and γ1 proteins that are expressed before viral DNA synthesis are favored targets of CD8(+) T cells, and that dominance within the TCR repertoire is likely due to the frequency or expansion and survival characteristics of CD8(+) T cell precursors.  相似文献   

11.
Schell TD 《Journal of virology》2004,78(4):1751-1762
Mice that express the viral oncoprotein simian virus 40 (SV40) large T antigen (T-Ag) as a transgene provide useful models for the assessment of the state of the host immune response in the face of spontaneous tumor progression. Line SV11 (H2(b)) mice develop rapidly progressing choroid plexus tumors due to expression of full-length T-Ag from the SV40 promoter. In addition, T-Ag expression in the thymus of SV11 mice results in the deletion of CD8(+) T cells specific for the three H2(b)-restricted immunodominant epitopes of T-Ag. Whether CD8(+) T cells specific for the immunorecessive H2-D(b)-restricted epitope V of T-Ag survive negative selection in SV11 mice has not been determined. Immunization of SV11 mice with rVV-ES-V, a recombinant vaccinia virus expressing epitope V as a minigene, resulted in the induction of weak, but reproducible, epitope V-specific cytotoxic T-lymphocyte (CTL) responses. This weak lytic response corresponded with a decreased frequency of epitope V-specific CTL that could be recruited in SV11 mice. In addition, CTL lines derived from rVV-ES-V-immunized SV11 mice had reduced avidities compared to that seen with CTL derived from healthy mice. Despite this initial weak response, significant numbers of epitope V-specific CD8(+) T cells were detected in SV11 mice ex vivo following a priming-boosting approach and these cells demonstrated high avidity for epitope V. The results suggest that low numbers of tumor-reactive CD8(+) T cells with high avidity for epitope V survive negative selection in SV11 mice but can be expanded by specific boosting approaches in the tumor bearing host.  相似文献   

12.
Despite negative selection in the thymus, significant numbers of autoreactive T cells still escape to the periphery and cause autoimmune diseases when immune regulation goes awry. It is largely unknown how these T cells escape clonal deletion. In this study, we report that CD24 deficiency caused deletion of autoreactive T cells that normally escape negative selection. Restoration of CD24 expression on T cells alone did not prevent autoreactive T cells from deletion; bone marrow chimera experiments suggest that CD24 on radio-resistant stromal cells is necessary for preventing deletion of autoreactive T cells. CD24 deficiency abrogated the development of experimental autoimmune encephalomyelitis in transgenic mice with a TCR specific for a pathogenic autoantigen. The role of CD24 in negative selection provides a novel explanation for its control of genetic susceptibility to autoimmune diseases in mice and humans.  相似文献   

13.
Self-reactive T cells that survive the process of positive and negative selection during thymocyte development represent potential effector cells against tumors that express these same self-Ags. We have previously shown that CD8+ T lymphocytes (T(CD8)) specific for an immunorecessive epitope, designated epitope V, from the SV40 large T Ag (Tag) escape thymic deletion in line SV11 Tag-transgenic mice. In contrast, these mice are tolerant to the three most dominant Tag epitopes. The majority of the residual epitope V-specific T(CD8) have a low avidity for the target epitope, but a prime/boost regimen can expand higher avidity clones in vivo. Whether higher avidity T(CD8) targeting this epitope are affected by Tag-expressing tumors in the periphery or can be recruited for control of tumor progression remains unknown. In the current study, we determined the fate of naive TCR-transgenic T(CD8) specific for Tag epitope V (TCR-V cells) following transfer into SV11 mice bearing advanced-stage choroid plexus tumors. The results indicate that TCR-V cells are rapidly triggered by the endogenous Tag and acquire effector function, but fail to accumulate within the tumors. Primary immunization enhanced TCR-V cell frequency in the periphery and promoted entry into the brain, but a subsequent booster immunization caused a dramatic accumulation of TCR-V T cells within the tumors and inhibited tumor progression. These results indicate that epitope V provides a target for CD8+ T cells against spontaneous tumors in vivo, and suggests that epitopes with similar properties can be harnessed for tumor immunotherapy.  相似文献   

14.
High steady-state frequencies of CMV-specific CD4(+) memory T cells are maintained in CMV-exposed subjects, and these cells are thought to play a key role in the immunologic control of this permanent infection. However, the essential components of this response are poorly defined. Here, we report the use of a step-wise application of flow cytometric and molecular techniques to determine the number and size of the TCR Vbeta-defined clonotypes within freshly obtained CMV-specific CD4(+) memory T cell populations of four healthy, CMV-exposed human subjects. This analysis revealed a stable clonotypic hierarchy in which 1-3 dominant clonotypes are maintained in concert with more numerous subdominant and minor clonotypes. These dominant clonotypes accounted for 10-50% of the overall CMV response, and comprised from 0.3 to 4.0% of peripheral blood CD4(+) T cells. Two subjects displayed immunodominant responses to single epitopes within the CMV matrix phosphoprotein pp65; these single epitope responses were mediated by a single dominant clonotype in one subject, and by multiple subdominant and minor clonotypes in the other. Thus, the CMV-specific CD4(+) T cell memory repertoire in normal subjects is characterized by striking clonotypic dominance and the potential for epitope focusing, suggesting that primary responsibility for immunosurveillance against CMV reactivation rests with a handful of clones recognizing a limited array of CMV determinants. These data have important implications for the understanding of mechanisms by which a genetically stable chronic viral pathogen such as CMV is controlled, and offer possible insight into the failure of such control for a genetically flexible pathogen like HIV-1.  相似文献   

15.
Antiviral CD8(+) T cells are a key component of the adaptive immune system against hepatitis C virus (HCV). For the development of immune therapies, it is essential to understand how CD8(+) T cells contribute to clearance of infection and why they fail so often. A mechanism for secondary failure is mutational escape of the virus. However, some substitutions in viral epitopes are associated with fitness costs and often require compensatory mutations. We hypothesized that compensatory mutations may point toward epitopes under particularly strong selection pressure that may be beneficial for vaccine design because of a higher genetic barrier to escape. We previously identified two HLA-B*15-restricted CD8(+) epitopes in NS5B (LLRHHNMVY(2450-2458) and SQRQKKVTF(2466-2474)), based on sequence analysis of a large HCV genotype 1b outbreak. Both epitopes are targeted in about 70% of HLA-B*15-positive individuals exposed to HCV. Reproducible selection of escape mutations was confirmed in an independent multicenter cohort in the present study. Interestingly, mutations were also selected in the epitope flanking region, suggesting that compensatory evolution may play a role. Covariation analysis of sequences from the database confirmed a significant association between escape mutations inside one of the epitopes (H2454R and M2456L) and substitutions in the epitope flanking region (S2439T and K2440Q). Functional analysis with the subgenomic replicon Con1 confirmed that the primary escape mutations impaired viral replication, while fitness was restored by the additional substitutions in the epitope flanking region. We concluded that selection of escape mutations inside an HLA-B*15 epitope requires secondary substitutions in the epitope flanking region that compensate for fitness costs.  相似文献   

16.
CD8(+) T cells play a significant role in the control of HIV replication, yet the associated qualitative and quantitative factors that determine the outcome of infection remain obscure. In this study, we examined Ag-specific CD8(+) TCR repertoires longitudinally in a cohort of HLA-B*2705(+) long-term nonprogressors with chronic HIV-1 infection using a combination of molecular clonotype analysis and polychromatic flow cytometry. In each case, CD8(+) T cell populations specific for the immunodominant p24 Gag epitope KRWIILGLNK (KK10; residues 263-272) and naturally occurring variants thereof, restricted by HLA-B*2705, were studied at multiple time points; in addition, comparative data were collected for CD8(+) T cell populations specific for the CMV pp65 epitope NLVPMVATV (NV9; residues 495-503), restricted by HLA-A*0201. Dominant KK10-specific clonotypes persisted for several years and exhibited greater stability than their contemporaneous NV9-specific counterparts. Furthermore, these dominant KK10-specific clonotypes exhibited cross-reactivity with antigenic variants and expressed significantly higher levels of CD127 (IL-7Rα) and Bcl-2. Of note, we also found evidence that promiscuous TCR α-chain pairing associated with alterations in fine specificity for KK10 variants could contribute to TCR β-chain prevalence. Taken together, these data suggest that an antiapoptotic phenotype and the ability to cross-recognize variant epitopes contribute to clonotype longevity and selection within the peripheral memory T cell pool in the presence of persistent infection with a genetically unstable virus.  相似文献   

17.
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.  相似文献   

18.
The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design.  相似文献   

19.
We identified a series of immunodominant and subdominant epitopes from alpha fetoprotein (AFP), restricted by HLA-A*0201, which are recognized by the human T cell repertoire. The four immunodominant epitopes have been tested for immunogenicity in vivo, in HLA-A*0201+AFP+ advanced stage hepatocellular cancer (HCC) patients, and have activated and expanded AFP-specific IFN-gamma-producing T cells in these patients, despite high serum levels of this self Ag. Here, we have examined the frequency, function, and avidity of the T cells specific for subdominant epitopes from AFP. We find that T cells specific for several of these epitopes are of similar or higher avidity than those specific for immunodominant epitopes. We then tested the peripheral blood of subjects ex vivo with different levels of serum AFP for the hierarchy of response to epitopes from this Ag and find that HCC patients have detectable frequencies of circulating IFN-gamma-producing AFP-specific CD8+ T cells to both immunodominant and subdominant epitopes. We find the immunodominant and subdominant peptide-specific T cells to be differentially expanded with different modes of Ag presentation. Whereas spontaneous and AFP protein-stimulated responses show evidence for immunodominance, AdVhAFP-transduced dendritic cell-stimulated responses were broader and not skewed. Importantly, these data identify subdominant epitopes from AFP that can activate high-avidity T cells, and that can be detected and expanded in HCC subjects. These subdominant epitope-specific T cells can also recognize tumor cells and may be important therapeutically.  相似文献   

20.
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号