首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillium janthinellum is able to grow on glycine as the sole carbon and nitrogen source. The amino acid is transaminated to glyoxylate which is further metabolised to pyruvate by the glycerate pathway. The reaction product of partially purified glycerate kinase from this fungus is 2-phosphoglycerate. Phosphoglycerate mutase initiates gluconeogenesis from glycine. Partially purified phosphoglycerate mutase is inhibited by fructose 6-phosphate. The possible significance of this regulation is discussed.  相似文献   

2.
A species of Flavobacterium able to oxidise ethylene glycol to pyruvate via glyoxylate, glycerate, 2-phosphoglycerate and phosphoenolpyruvate exploits phosphoglycerate mutase to initiate gluconeogenesis. Partially purified phosphoglycerate mutase from this bacterium is independent of adenylate charge control but is activated by phosphoenolpyruvate. The possible significance of this regulation is discussed.  相似文献   

3.
A procedure for the determination of picomole amounts of glycerate 3-phosphate, glycerate 2-phosphate, and phosphoenol pyruvate is described. These metabolites were utilized by the glycolytic enzymes phosphoglycerate mutase, enolase, and pyruvate kinase to generate ATP which was determined by firefly luciferase/luciferin luminescence. The phosphoglycerate mutase used was of the glycerate 2,3-bisphosphate-independent type and was prepared from wheat germ. Stoichiometric conversion of glycerate 3-P, ranging in amount from 9 to 275 pmol, occurred after 25 min preincubation and required a narrow range of added mutase. The application of the procedure for determining these metabolites in suspensions of plant protoplasts is described.  相似文献   

4.
Histidine, arginine and lysine residues are essential for the multifunctional 2,3-bisphosphoglycerate synthase-phosphatase purified from pig skeletal muscle. The synthase, phosphatase and phosphoglycerate mutase activities of the enzyme are concurrently lost upon treatment with diethylpyrocarbonate, phenylglyoxal and trinitrobenzenesulfonate. The phosphatase activity shows hyperbolic kinetics. In contrast, the synthase activity shows a nonhyperbolic pattern which fits to a second-degree polynomial. The Km values for glycerate 1,3-P2, glycerate 3-P and glycerate 2,3-P2 are similar to those of the enzyme from mammalian erythrocytes.  相似文献   

5.
Two enzymes which possess 2,3-bisphosphoglycerate synthase, 2,3-bisphosphoglycerate phosphatase and phosphoglycerate mutase activities have been purified from pig skeletal muscle. One of the enzymes corresponds to type M phosphoglycerate mutase. The other enzyme shows properties similar to those of the 2,3-bisphosphoglycerate synthase-phosphatase present in mammalian erythrocytes. The erythrocyte and the muscle enzyme possess the same molecular (56 000) and subunit (27 000) weights. The synthase, phosphatase and mutase activity ratio is similar in both enzymes, and they are affected by the same inhibitor (glycerate 3-P) and activators (glycolate 2-P, pyrophosphate, sulfite and bisulfite).  相似文献   

6.
The bisphosphatase domain of the rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been shown to exhibit a structural similarity to yeast phosphoglycerate mutase and human red blood cell 2,3-bisphosphoglycerate mutase including very similar active site sequences with a histidyl residue being involved in phospho group transfer. The liver bifunctional enzyme was found to catalyze the hydrolysis of glycerate 1,3-bisphosphate to glycerate 3-phosphate and inorganic phosphate. The Km for glycerate 1,3-bisphosphate was 320 microM and the Vmax was 11.5 milliunits/mg. Incubation of the rat liver enzyme with [1-32P]glycerate 1,3-bisphosphate resulted in the formation of a phosphoenzyme intermediate, and the labeled amino acid was identified as 3-phosphohistidine. Tryptic and endoproteinase Lys-C peptide maps of the 32P-phosphoenzyme labeled either with [2-32P]fructose 2,6-bisphosphate or [1-32P]glycerate 1,3-bisphosphate revealed that 32P-radioactivity was found in the same peptide, proving that the same histidyl group accepts phosphate from both substrates. Fructose 2,6-bisphosphate inhibited competitively the formation of phosphoenzyme from [1-32P]glycerate 1,3-bisphosphate. Effectors of fructose-2,6-bisphosphatase also inhibited phosphoenzyme formation. Substrates and products of phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase also modulated the activities of the bifunctional enzyme. These results demonstrate that, in addition to a structural homology, the bisphosphatase domain of the bifunctional enzyme has a functional similarity to phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase and support the concept of an evolutionary relationship between the three enzyme activities.  相似文献   

7.
The isomerization of 3-phospho-D-glycerate and 2-phospho-D-glycerate catalyzed by the cofactor-independent phosphoglycerate mutase from wheat germ (the isolation and crystallization of which is described in the Appendix) has been shown to be intramolecular by two methods. Mass-spectrometric analysis of the products from the isomerization of a mixture of 3-phospho-D-[2(-2)H]glycerate and 3-[18O]phospho-D-glycerate shows that there is no exchange of labeled phosphoryl group between carbon skeletons in the mutase-catalyzed reaction. Analysis of the products from the isomerization of a mixture of 3-phospho-D-[2(-2)H]glycerate and 3-[32p]phospho-D-glycerate by a method involving the kinetic discrimination between 2(-2)H and 2(-1)H species using the enolase isotope effect similarly shows that the wheat germ phosphoglycerate mutase mediates an intramolecular transfer of the phosphoryl group.  相似文献   

8.
Bisphosphoglycerate mutase (EC 5.4.2.4.) is a trifunctional enzyme which displays synthase, mutase, and phosphatase activities. The purification, characterization, and structural study of an abnormal form of the enzyme, isolated from a patient which we reported earlier (Rosa, R., Prehu, M. O., Beuzard, Y., and Rosa, J. (1978) J. Clin. Invest. 62, 907-915), is described. The abnormal enzyme, present at 50% of the level of the normal enzyme as estimated by immunological methods, showed elevated electrophoretic mobility and hybridized with erythrocyte phosphoglycerate mutase (EC 5.4.2.1.) in the same manner as the normal control. The mutant enzyme was unstable at 55 degrees C and could be protected against thermal instability by 0.5 mM glycerate 2,3-bisphoshate but not by either glycerate 3-phosphate or glycolate 2-phosphate. Two of the three functions of the mutant enzyme were distinct from those of the normal protein. The specific activity of the synthase was 0.57% of normal and that of the mutase 4.1%. By contrast, the specific phosphatase activity was not affected by the mutation. However, the phosphatase activity of the mutated protein was markedly less stimulated by glycolate-2-phosphate than that of the control. High performance liquid chromatography analysis of tryptic peptides derived from the mutant enzyme showed an abnormal profile with the absence of two peaks normally containing the T12 and T13 peptides and without the appearance of a supplementary peak. Amino acid sequence and mass spectrometric analysis demonstrated the substitution of Arg----Cys residue in position 89 producing an uncleaved T12-T13 present in the same peak as the T6. Considered together, our data suggest that Arg-89 is located at or near the active site of bisphosphoglycerate mutase and that this residue is probably involved in the binding of monophosphoglycerates.  相似文献   

9.
In pig skeletal muscle exist four enzymes with 2,3-bisphosphoglycerate phosphatase activity. Two of them (forms I-A and I-C) are multi-functional enzymes which, in addition to the phosphatase activity, possess 2,3-bisphosphoglycerate synthase and phosphoglycerate mutase activities. The other two enzyme forms (II-A and II-B) only show the phosphatase activity. The four enzymes differ in substrate specificity. Form I-C is highly specific for glycerate 2,3-P2; form I-A also hydrolyzes the monophosphoglycerates and forms II-A and II-B are specific for phosphoester bonds adjacent to a C-1 carboxylic group. The enzymes possess similar Km, Kcat and optimum pH value, but they are differently inhibited by the reaction products. They are also differently affected by glycolate-2-P (their main activator) and by other modifiers. Probably form I-A, which corresponds to M-type phosphoglycerate mutase, is the main enzyme implicated in the breakdown of glycerate 2,3-P2 in pig muscle.  相似文献   

10.
R Breathnach  J R Knowles 《Biochemistry》1977,16(14):3054-3060
From studies using unlabeled phospho-D-glycerate in solutions enriched in H2(18)O, and from experiments involving [18O]phospho-D-glycerate, it is shown that the intramolecular isomerization of 2- and 3-phospho-D-glycerate that is catalyzed by the phosphoglycerate mutase from wheat germ does not involve an intermediate 2,3-cyclic phosphate. It is also shown that phosphoglycerate mutase catalyzes the hydrolysis of the substrate analogues 2-phosphoglycolate, 2-phospho-D-lactate, 3-phosphohydroxypropionate, phosphoenolpyruvate, and phosphohydroxypyruvate. The substrates 3- and 2-phospho-D-glycerate are not hydrolyzed, nor are 2,3-bisphospho-D-glycerate, 2-phospho-L-lactate, 3-phospho-L-glycerate, or sn-glycerol 3-phosphate. Although no exchange of D-[14C]glycerate into phospho-D-glycerate can be detected, the enzyme catalyzes the transfer of the phosphoryl group from "unnatural" donors such as 2-phosphoglycolate, to the "natural" acceptor, D-glycerate. It is concluded that the intramolecular phosphoryl transfer catalyzed by the wheat germ phosphoglycerate mutase follows a pathway involving a phosphoryl-enzyme intermediate.  相似文献   

11.
In this study the interplay of mitochondria and peroxisomes in photorespiration was simulated in a reconstituted system of isolated mitochondria and peroxisomes from spinach (Spinacia oleracea L.) leaves. The mitochondria oxidizing glycine produced serine, which was reduced in the peroxisomes to glycerate. The required reducing equivalents were provided by the mitochondria via the malate-oxaloacetate (OAA) shuttle, in which OAA was reduced in the mitochondrial matrix by NADH generated during glycine oxidation. The rate of peroxisomal glycerate formation, as compared with peroxisomal protein, resembled the corresponding rate required during leaf photosynthesis under ambient conditions. When the reconstituted system produced glycerate at this rate, the malate-to-OAA ratio was in equilibrium with a ratio of NADH/NAD of 8.8 × 10−3. This low ratio is in the same range as the ratio of NADH/NAD in the cytosol of mesophyll cells of intact illuminated spinach leaves, as we had estimated earlier. This result demonstrates that in the photorespiratory cycle a transfer of redox equivalents from the mitochondria to peroxisomes, as postulated from separate experiments with isolated mitochondria and peroxisomes, can indeed operate under conditions of the very low reductive state of the NADH/NAD system prevailing in the cytosol of mesophyll cells in a leaf during photosynthesis.  相似文献   

12.
The occurrence of a photorespiratory 2-phosphoglycolate metabolism in cyanobacteria is not clear. In the genome of the cyanobacterium Synechocystis sp. strain PCC 6803, we have identified open reading frames encoding enzymes homologous to those forming the plant-like C2 cycle and the bacterial-type glycerate pathway. To study the route and importance of 2-phosphoglycolate metabolism, the identified genes were systematically inactivated by mutagenesis. With a few exceptions, most of these genes could be inactivated without leading to a high-CO(2)-requiring phenotype. Biochemical characterization of recombinant proteins verified that Synechocystis harbors an active serine hydroxymethyltransferase, and, contrary to higher plants, expresses a glycolate dehydrogenase instead of an oxidase to convert glycolate to glyoxylate. The mutation of this enzymatic step, located prior to the branching of phosphoglycolate metabolism into the plant-like C2 cycle and the bacterial-like glycerate pathway, resulted in glycolate accumulation and a growth depression already at high CO(2). Similar growth inhibitions were found for a single mutant in the plant-type C2 cycle and more pronounced for a double mutant affected in both the C2 cycle and the glycerate pathway after cultivation at low CO(2). These results suggested that cyanobacteria metabolize phosphoglycolate by the cooperative action of the C2 cycle and the glycerate pathway. When exposed to low CO(2), glycine decarboxylase knockout mutants accumulated far more glycine and lysine than wild-type cells or mutants with inactivated glycerate pathway. This finding and the growth data imply a dominant, although not exclusive, role of the C2 route in cyanobacterial phosphoglycolate metabolism.  相似文献   

13.
Levi C  Preiss J 《Plant physiology》1976,58(6):753-756
ADP-glucose was found to be the primary sugar nucleotide used for glycogen synthesis by Synechococcus 6301. ADP-glucose pyrophosphorylase was partially purified 12-fold from this blue-green bacterium. The enzyme was activated 8- to 25-fold by glycerate 3-phosphate. Fructose 6-phosphate, fructose 1,6-bisphosphate, 5'-adenylate, and adenosine diphosphate activated the enzyme, but less than glycerate 3-phosphate. The enzyme was inhibited by inorganic phosphate. The I(0.5) of phosphate was 0.072 mm, and in the presence of 2 mm glycerate 3-phosphate, increased to 1.8 mm. The substrate saturation curves for glucose 1-phosphate and ATP were hyperbolic in both the presence and absence of glycerate 3-phosphate or phosphate. The saturation curve for MgCl(2) was sigmoidal; 2 mm glycerate 3-phosphate decreased the sigmoidicity from a Hill slope n value of 5.6 to 2.8, and increased the MgCl(2) optimum from 3 mm to 6 to 7 mm.  相似文献   

14.
Phosphoglucomutase, in addition to catalyzing the interconversion of glucose 1-P and glucose 6-P, catalyzes both the synthesis of glucose 1,6-P2 from glucose monophosphate and either fructose 1,6-P2 or glycerate 1,3-P2, and the hydrolysis of glucose 1,6-P2. Vanadate inhibits the mutase activity, activates the synthase activities, and does not affect the phosphatase activity. These effects suggest that the "exchange" step postulated for the phosphoglucomutase pathway is specifically inhibited by vanadate.  相似文献   

15.
The metabolism of nitrilotriacetate by a pseudomonad   总被引:7,自引:0,他引:7  
1. An organism that grows on nitrilotriacetate as sole source of carbon and energy was isolated in pure culture and was identified as a pseudomonad. 2. Cell-free extracts of the nitrilotriacetate-grown pseudomonad contain an enzyme that catalyses the NADH-and O(2)-dependent oxidation of nitrilotriacetate to iminodiacetate and glyoxalate. This enzyme is absent from extracts of glucose-grown cells. 3. Compared with growth on glucose, growth on nitrilotriacetate results in increased activities of enzymes of glycine and serine metabolism, namely serine hydroxymethyltransferase, glycine decarboxylase, serine-oxaloacetate aminotransferase and hydroxypyruvate reductase. 4. Cell-free extracts of the nitrilotriacetate-grown organism contain the enzyme glyoxalate carboligase and, when supplemented with NADH, Mg(2+) and thiamin pyrophosphate, can catalyse the anaerobic conversion of glyoxalate into glycerate. 5. These results are incorporated in a scheme which shows the oxidative metabolism of nitrilotriacetate by the successive removal of C(2) units to form 2mol of glyoxalate and 1mol of glycine per mol of nitrilotriacetate degraded. The glyoxalate and glycine are then both metabolized to glycerate by separate pathways, via tartronic semialdehyde and serine respectively. The role of this scheme in the growth of the organism on nitrilotriacetate is discussed.  相似文献   

16.
The concentrations of following metabolites were determined in freeze-clamped gastrocnemius muscle samples: glucose 1-phosphate, glucose 6-phosphate, glucose, fructose 1,6-diphosphate, fructose 6-phosphate, D-glyceraldehyde 3-phosphate. dihydroxyacetone phosphate, phosphoenolpyruvate, pyruvate, glycerol 3-phosphate, glycerol, creatine phosphate, creatine, glycerate 3-phosphate, glycerate 2-phosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, inorganic phosphate. The results showed that within the limits of experimental error, concentration homeostasis for this metabolites is founded at least in some cases on equilibria between enzymic transformations. Discrepancies between constant mass ratios measured in this study and equilibrium constants allow the free energy variation delta G to keep creatine phosphate at high concentration to be calculated. For the phosphoglycerate mutase system, the equilibrium constant in controls and trained animals is unchanged and corresponds to that in vitro. Training hindered glycolysis and favoured phosphorylation of creatine by glycerol 3-phosphate. Metabolites of the pyruvate kinase and hexokinase system cannot be homogeneously distributed in one space. The creatine kinase system is also separated from the hexokinase und pyruvate kinase system. A compartition of glycolytic process in gastrocnemius muscle seems to be inferred from these results.  相似文献   

17.
The pathway of degradation of nitrilotriacetate (NTA) was determined by using cell-free extracts and a 35-fold purification of NTA monooxygenase. The first step in the breakdown was an oxidative cleavage of the tertiary amine by the monooxygenase to form the aldo acid, glyoxylate, and the secondary amine, iminodiacetate (IDA). NTA N-oxide acted as a substrate analog for induction of the monooxygenase and was slowly metabolized by the enzyme, but was not an intermediate in the pathway. No intermediate before IDA was found, but an unstable alpha-hydroxy-NTA intermediate was postulated. IDA did undergo cleavage in the presence of the purified monooxygenase to give glyoxylate and glycine, but was not metabolized in cell-free extracts. Glyoxylate was further metabolized by cell-free extracts to yield CO2 and glycerate or glycine, products also found from NTA metabolism. Of the three bacterial isolates in which the NTA pathway has been studied, two strains, one isolated from a British soil and ours from a Michigan soil, appear to be almost identical.  相似文献   

18.
Kinetic properties of PGM1 and PGM2 phosphoglucomutase "primary" isoenzymes from human erythrocytes were studied. The two enzyme forms share a "ping-pong" kinetic mechanism and show similar Km for substrate (glucose 1-P) and cofactor (glucose 1,6-P2). Micromolar concentrations of fructose 1,6-P2 and glycerate 2,3-P2 inhibit both PGM1 and PGM2 isoenzymes to a similar extent. The sole PGM2 form is affected by ribose monophosphates (ribose 1-P and ribose 5-P) that act as mutase inhibitors vs. glucose 1,6-P2 and as apparent activators vs. glucose 1-P. The interaction between PGM2 isoenzyme and ribose monophosphates is discussed in the light of the ability of this form to also display phosphoribomutase activity.  相似文献   

19.
1. Glycerate 1,3-P2-dependent glucose, 1,6-P2 synthase has been purified 2000-fold from pig skeletal muscle, with a yield of 75%. 2. The enzyme possesses fructose 1,6-P2-dependent glucose 1,6-P2 synthase and phosphoglucomutase activities, which represent 0.1 and 60% of the main activity, respectively. 3. Both glucose 1-P and glucose 6-P can act as acceptors of the phosphoryl group from glycerate 1,3-P2. 4. The Km values are 19 microM and 67 nM for glucose 1-P and glycerate 1,3-P2, respectively. 5. The enzyme is inhibited by glycerate 2,3-P2, fructose 1,6-P2, glycerate 3-P, phosphoenolpyruvate and lithium, the inhibition pattern varying with the compound.  相似文献   

20.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号