共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
植物钙调素结合蛋白研究进展 总被引:23,自引:0,他引:23
钙调素(CaM)作为最重要的一类Ca2 传感蛋白可以通过与其下游CaM结合蛋白(CaMBP)作用而调节细胞的生理功能.因此,对CaMBP的研究是揭示CaM作用机制的重要内容,是探明Ca2 -CaM信号转导系统的关键.该文从CaMBP和CaM的结合特性、植物CaMBP的分布以及植物CaMBP的生物学功能等方面综述了植物CaMBP的研究现状和最新进展. 相似文献
4.
核磁共振波谱应用于结构生物学的研究进展 总被引:1,自引:0,他引:1
综述了核磁共振波谱在结构生物学研究中的进展。在溶液中测定生物大分子的结构,分子大小的限制正被减少,尽管新结构的测定仍然需要付出比较大的努力。核磁共振是一个有效的手段,可用于研究在许多细胞过程中存在的弱的或者瞬态的蛋白质-蛋白质相互作用。结构的柔性在蛋白质分子功能中起了中心作用。由于最近方法学的发展,使NMR可以表征蛋白质的动力学,从而可以对分子机制有新的认识。核磁共振波谱可以在原子分辨率下表征无序的蛋白质系统,可以研究折叠路径。跨膜蛋白在细胞中起了关键作用,这使它们成为药物的靶标。应用液体和固体核磁共振技术已经成功测定了跨膜蛋白质的结构。 相似文献
5.
钙不依赖性钙调素结合蛋白的研究进展 总被引:4,自引:0,他引:4
钙调素是普遍存在于真核生物细胞中、发挥多种生物学调控作用的信号组分.钙调素不仅在有Ca2 情况下通过与钙依赖性钙调素结合蛋白作用而传递信号,也能在相对无Ca2 条件下直接结合钙不依赖性钙调素结合蛋白而传递信号.综述了无钙离子结合钙调素及钙不依赖性钙调素结合蛋白的结构特性、钙不依赖性钙调素结合蛋白的种类及其可能的生物学作用,这将有助于我们深入认识钙调素介导信号途径的特异性、复杂性和多样性. 相似文献
6.
7.
Ca2+是植物体内重要的第二信使,当植物受到各种环境刺激时,细胞内的Ca2+浓度瞬间产生变化,并被Ca2+信号效应器识别,通过与下游的靶蛋白结合并调节其活性,参与调控植物各种生理活动。钙调素结合蛋白以依赖Ca2+或不依赖Ca2+的方式结合钙调素。对目前已经鉴定的植物钙调素结合蛋白结构特点进行了综述,并着重介绍了钙调素结合蛋白是如何参与调节植物对生物胁迫和非生物胁迫的反应,为提高作物抗病抗逆能力研究提供理论基础。 相似文献
8.
钙调素拮抗剂的研究动态 总被引:3,自引:0,他引:3
胡卓逸 《生物化学与生物物理进展》1992,19(6):427-431
从钙、钙调素的功能论及钙桔抗剂和钙调素拮抗剂的概念.并着重叙述了国内外钙调素拮抗剂研究中的问题和开发动态。 相似文献
9.
小麦黄化胚芽鞘经苯基琼脂糖亲和层析提取和纯化,其细胞壁CaM在有钙和缺钙时SDS电泳呈现不同的迁移率;依赖Ca~(2 )与苯基疏水结合;在紫外吸收光谱上具有五个特征峰;对PDE的激活剂量反应曲线和从非活性状态向活性状态转变时所需的Ca~(2 )浓度均和胞内CaM相同,说明细胞壁CaM和胞内CaM具有相同的基本理化特性。采用CaM琼脂糖亲和层析,发现在小麦细胞壁中存在CaM结合蛋白,其中以分子量为40.7 kD的 CaM结合多肽为主。细胞壁CaM结合蛋白不具有过氧化物酶、ATP酶或酸性磷酸酯酶的活性。 相似文献
10.
钙调素普遍存在于真核生物细胞中,是多种生物学作用的信号组分.钙/钙调素信号途径由钙离子,钙调素以及下游的靶蛋白组成,通过与靶蛋白作用而传递信号并且发挥生物学功能.本文主要对于旱,盐,冷以及热胁迫下钙调素结合蛋白的作用进行综述,并对相关研究领域的未来研究方向进行了展望. 相似文献
11.
蛋白质特定的三维结构与其生物功能密切相关,因此,研究蛋白质的三维结构有助于揭示其生物功能机制。将核磁共振(NMR)波谱法应用于研究溶液状态下蛋白质的三维结构,能够更加准确地揭示蛋白质结构与生物功能之间的关系。本文综述了NMR解析蛋白质三维结构的理论和技术方法,以及NMR结合其他生物物理手段,并辅以分子建模计算法研究蛋白质三维结构的研究进展和最新方法,为精准解析蛋白质的三维结构提供思路及策略。 相似文献
12.
蛋白质溶液NMR结构测定的一些新进展 总被引:4,自引:0,他引:4
新的标记技术的进展和采用稀释的液晶作为溶剂以提供额外的结构信息,提高了核磁共振技术测定蛋白质溶液三维结构的精度,扩大了分子质量测定范围.目前已经利用多维 15N,13C,2H标记NMR测定了许多分子质量为30 ku左右的蛋白质溶液结构,这一上限可能还会被进一步提高. 相似文献
13.
Hao Huang Hiroaki Ishida Hans J. Vogel 《Protein science : a publication of the Protein Society》2010,19(3):475-485
Soybean calmodulin isoform 4 (sCaM4) is a plant calcium‐binding protein, regulating cellular responses to the second messenger Ca2+. We have found that the metal ion free (apo‐) form of sCaM4 possesses a half unfolded structure, with the N‐terminal domain unfolded and the C‐terminal domain folded. This result was unexpected as the apo‐forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg2+ ions are always present at high concentrations in cells (0.5–2 mM), we suggest that Mg2+ should be bound to sCaM4 in nonactivated cells. CD studies revealed that in the presence of Mg2+ the initially unfolded N‐terminal domain of sCaM4 folds into an α‐helix‐rich structure, similar to the Ca2+ form. We have used the NMR backbone residual dipolar coupling restraints 1DNH, 1DCαHα, and 1DC′Cα to determine the solution structure of the N‐terminal domain of Mg2+‐sCaM4 (Mg2+‐sCaM4‐NT). Compared with the known structure of Ca2+‐sCaM4, the structure of the Mg2+‐sCaM4‐NT does not fully open the hydrophobic pocket, which was further confirmed by the use of the fluorescent probe ANS. Tryptophan fluorescence experiments were used to study the interactions between Mg2+‐sCaM4 and CaM‐binding peptides derived from smooth muscle myosin light chain kinase and plant glutamate decarboxylase. These results suggest that Mg2+‐sCaM4 does not bind to Ca2+‐CaM target peptides and therefore is functionally similar to apo‐mCaM. The Mg2+‐ and apo‐structures of the sCaM4‐NT provide unique insights into the structure and function of some plant calmodulins in resting cells. 相似文献
14.
Savchenko A Yee A Khachatryan A Skarina T Evdokimova E Pavlova M Semesi A Northey J Beasley S Lan N Das R Gerstein M Arrowmith CH Edwards AM 《Proteins》2003,50(3):392-399
Only about half of non-membrane-bound proteins encoded by either bacterial or archaeal genomes are soluble when expressed in Escherichia coli (Yee et al., Proc Natl Acad Sci USA 2002;99:1825-1830; Christendat et al., Prog Biophys Mol Biol 200;73:339-345). This property limits genome-scale functional and structural proteomics studies, which depend on having a recombinant, soluble version of each protein. An emerging strategy to increase the probability of deriving a soluble derivative of a protein is to study different sequence homologues of the same protein, including representatives from thermophilic organisms, based on the assumption that the stability of these proteins will facilitate structural analysis. To estimate the relative merits of this strategy, we compared the recombinant expression, solubility, and suitability for structural analysis by NMR and/or X-ray crystallography for 68 pairs of homologous proteins from E. coli and Thermotoga maritima. A sample suitable for structural studies was obtained for 62 of the 68 pairs of homologs under standardized growth and purification procedures. Fourteen (eight E. coli and six T. maritima proteins) samples generated NMR spectra of a quality suitable for structure determination and 30 (14 E. coli and 16 T. maritima proteins) samples formed crystals. Only three (one E. coli and two T. maritima proteins) samples both crystallized and had excellent NMR properties. The conclusions from this work are: (1) The inclusion of even a single ortholog of a target protein increases the number of samples for structural studies almost twofold; (2) there was no clear advantage to the use of thermophilic proteins to generate samples for structural studies; and (3) for the small proteins analyzed here, the use of both NMR and crystallography approaches almost doubled the number of samples for structural studies. 相似文献
15.
简要叙述了核磁共振技术(NMR)在蛋白质领域的研究及应用。NMR法通过测定蛋白质在稀溶液状态下反应位点的特定参数来计算蛋白质的三级结构,并可深入了解一定时间范围内化学反应和蛋白质构象转变的动力学过程。通过NMR对抗原决定簇和抗体CDR作图,可以分析其一级结构和三维构象;对抗原抗体动力学的分析,对于设计基因疫苗、检测细胞表面抗原提呈以及分析抗原抗体复合物的构象变化也有着重要意义。 相似文献
16.
《Journal of molecular biology》2022,434(5):167407
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613–694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region 2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1613–694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation. 相似文献
17.
《Journal of molecular biology》2021,433(20):167127
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy—applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure–function relationships. 相似文献
18.
Kathy Wong Guennadi Kozlov Yinglu Zhang Kalle Gehring 《The Journal of biological chemistry》2015,290(41):24727-24737
Pathogenic Gram-negative bacteria use specialized secretion systems that translocate bacterial proteins, termed effectors, directly into host cells where they interact with host proteins and biochemical processes for the benefit of the pathogen. lpg1496 is a previously uncharacterized effector of Legionella pneumophila, the causative agent of Legionnaires disease. Here, we crystallized three nucleotide binding domains from lpg1496. The C-terminal domain, which is conserved among the SidE family of effectors, is formed of two largely α-helical lobes with a nucleotide binding cleft. A structural homology search has shown similarity to phosphodiesterases involved in cleavage of cyclic nucleotides. We have also crystallized a novel domain that occurs twice in the N-terminal half of the protein that we term the KLAMP domain due to the presence of homologous domains in bacterial histidine kinase-like ATP binding region-containing proteins and S-adenosylmethionine-dependent methyltransferase proteins. Both KLAMP structures are very similar but selectively bind 3′,5′-cAMP and ADP. A co-crystal of the KLAMP1 domain with 3′,5′-cAMP reveals the contribution of Tyr-61 and Tyr-69 that produces π-stacking interactions with the adenine ring of the nucleotide. Our study provides the first structural insights into two novel nucleotide binding domains associated with bacterial virulence. 相似文献
19.
Noelia Inés Burgardt Andreas Schmidt Annika Manns Alexandra Schutkowski Günther Jahreis Yi-Jan Lin Bianca Schulze Antonia Masch Christian Lücke Matthias Weiwad 《The Journal of biological chemistry》2015,290(27):16708-16722
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function. 相似文献