首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of water deficit on chlorophyll fluorescence, sugar content, and growth parameters of strawberry (Fragaria×ananassa Duch. cv. Elsanta) was studied. Drought stress caused significant reductions in leaf water potential, fresh and dry masses, leaf area, and leaf number. A gradual reduction of photochemical quenching (qP) and quantum efficiency (ΦPS2) was observed under drought stress while non-photochemical quenching (qN) increased. Maximum efficiency of photosystem 2 (Fv/Fm) was not affected by drought stress.  相似文献   

2.
Chlorophyll fluorescence as a tool in plant physiology   总被引:43,自引:0,他引:43  
  相似文献   

3.
In natural conditions, plants growth and development depends on environmental conditions, including the availability of micro- and macroelements in the soil. Nutrient status should thus be examined not by establishing the effects of single nutrient deficiencies on the physiological state of the plant but by combinations of them. Differences in the nutrient content significantly affect the photochemical process of photosynthesis therefore playing a crucial role in plants growth and development. In this work, an attempt was made to find a connection between element content in (i) different soils, (ii) plant leaves, grown on these soils and (iii) changes in selected chlorophyll a fluorescence parameters, in order to find a method for early detection of plant stress resulting from the combination of nutrient status in natural conditions. To achieve this goal, a mathematical procedure was used which combines principal component analysis (a tool for the reduction of data complexity), hierarchical k-means (a classification method) and a machine-learning method—super-organising maps. Differences in the mineral content of soil and plant leaves resulted in functional changes in the photosynthetic machinery that can be measured by chlorophyll a fluorescent signals. Five groups of patterns in the chlorophyll fluorescent parameters were established: the ‘no deficiency’, Fe-specific deficiency, slight, moderate and strong deficiency. Unfavourable development in groups with nutrient deficiency of any kind was reflected by a strong increase in F o and ΔVt 0 and decline in φ Po, φ Eo δ Ro and φ Ro. The strong deficiency group showed the suboptimal development of the photosynthetic machinery, which affects both PSII and PSI. The nutrient-deficient groups also differed in antenna complex organisation. Thus, our work suggests that the chlorophyll fluorescent method combined with machine-learning methods can be highly informative and in some cases, it can replace much more expensive and time-consuming procedures such as chemometric analyses.  相似文献   

4.
The rise of the chlorophyll fluorescence yield of Photosystem II (PS II) membranes as induced by high-intensity actinic light comprises only two distinct phases: (1) the initial O-J increase and (2) the subsequent J-P increase. Partial inhibition of the PS II donor side by heating or washing procedures which remove peripheral PS II proteins or cofactors of the oxygen-evolving complex results in decrease of magnitude and rate of the J-P phase. The rate constant of the J-P increase is directly proportional to the steady-state rate of oxygen evolution; complete suppression of the J-P phase corresponds to full inhibition. A characteristic dip after J-level is observed only in Tris-washed or severely heated PS II membranes; manganese release correlates with appearance of the dip after J-level as verified by EPR spectroscopy. Presence of stabilizing cosolutes (glycine betaine, sucrose) or addition of donor-side cofactors (bicarbonate, chloride, calcium) to PS II membranes before heating (47 °C, 5 min) diminishes J-P phase suppression and prevents dip appearance, whereas the addition after heating is without effect. In conclusion, analysis of chlorophyll fluorescence transients of PS II membranes is a potentially useful tool for investigations on photosynthetic oxygen evolution. A decreased rate of the J-P phase can be employed as a convenient indicator for partial inhibition of oxygen-evolution activity; the appearance of a dip after J-level is suggestive of manganese release. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
6.
7.
The possibility of using quenching analysis of chlorophyll a fluorescence as a selection tool for improving the cold tolerance of maize was investigated in six genotypes differing greatly in the ability to develop a competent photosynthetic apparatus at low temperature. Upon gradual cooling measurements of the quantum yield of electron transport (PSII) indicated that leaves of tolerant genotypes, that developed at suboptimal temperature (15C), maintained higher rates of electron transport than leaves of sensitive genotypes. This difference was largely due to the ability of the tolerant plants to keep higher efficiency of excitation energy capture by open photosystem II reaction centres (F'v/F'm). The absence of genotypic differences in leaves that developed at optimal temperature indicates that the trait is not expressed constitutively, but relies on adaptation mechanisms. Furthermore, the genotypic difference was not expressed under increasing illumination at 15C and 25°C suggesting that the trait is also low-temperature-specific and is not expressed solely in response to increasing excess light energy. Applying the method to flint and dent breeding population led to a substantial increase (up to 31%) in the photosynthetic capacity of hybrids between selected F3 inbreeding families grown at suboptimal temperature, demonstrating that the method is an efficient selection tool for improving the cold tolerance of maize through breeding.  相似文献   

8.
9.
This study reports the effects of light availability during the acclimatization phase on photosynthetic characteristics of micropropagated plantlets of grapevine (Vitis vinifera L.) and of a chestnut hybrid (Castanea sativa × C. crenata). The plantlets were acclimatized for 4 weeks (grapevine) or 6 weeks (chestnut), under two irradiance treatments, 150 and 300 mol m–2 s–1 after in vitro phases at 50 mol m–2 s–1. For both treatments and both species, leaves formed during acclimatization (so-called `new leaves') showed higher photosynthetic capacity than the leaves formed in vitro either under heterotrophic or during acclimatization (so-called `persistent leaves'), although lower than leaves of young potted plants (so-called `greenhouse leaves'). In grapevine, unlike chestnut, net photosynthesis and biomass production increased significantly with increased light availability. Several parameters associated with chlorophyll a fluorescence indicated photoinhibition symptoms in chestnut leaves growing at 300 mol m–2 s–1. The results taken as a whole suggest that 300 mol m–2 s–1 is the upper threshold for acclimatization of chestnut although grapevine showed a better response than chestnut to an increase in light.  相似文献   

10.
《Journal of bryology》2013,35(3):401-407
Abstract

Photosynthetic pigment content (chlorophylls and carotenoids), slow chlorophyll fluorescence parameters (FM and FT at 690 and 735 nm) and net CO2 assimilation rate were measured in the moss Tortuia ruralis (Hedw.) Gaertn. et al., and the lichens Cladonia convoluta (Lam.) P. Coul. and C. jurcata (Huds.) Schrad.

Chlorophylls, carotenoids and net CO2 assimilation (PN) were lower (on a dry-mass basis), and F690/F735 was higher, in all three cryptogams than average values reported for vascular plants. Within the moss shoots and lichens, chlorophylls, carotenoids, the fluorescence-decrease ratio (Rfd = [FM–FT]/FT) and net photosynthesis (PN) were higher, and F690/F735 was lower, in the apical/marginal, younger parts than in the basal, older ones. F690/F735 was inversely related to chlorophyll a+b, higher values indicating lower chlorophyll content.

There was a good correlation between the Rfd and PN (measured at optimal water content) in the different parts of the moss and lichens, and in samples of T. ruralis which had been exposed for two months to different levels of atmospheric pollution in a transplant experiment, a correlation also found in published work on the same species in the course of desiccation-remoistening cycles.

Chlorophyll fluorescence provides a non-invasive and relatively quick measure of overall photosynthetic function for ecophysiological studies, using either slow fluorescence kinetics (as here), or measurements from fast or modulated fluorometers.  相似文献   

11.
 Two-dimensional fluorescence spectroscopy (2D-FS) has been used as a new method for determining the viability of tobacco cells (Nicotiana tabacum L.). Both horizontal beam geometry and a vertical set-up achieved with bifurcated fibres were tested. The latter arrangement enabled us to avoid the negative effect of cell sedimentation. Incubation of a tobacco BY-2 cell suspension with dimethylsulfoxide (DMSO) (0–10% v/v) resulted in cell samples differing in their viability – from fully viable (0–2% DMSO) to totally non-viable (8–10%DMSO). The validity of determining viability by means of measuring cell esterase activity by 2D-FS using fluorescein diacetate as a fluorogenic substrate was verified by comparison with microscopic evaluation of fluorescein fluorescence as well as with the routinely adopted trypan blue exclusion test. Received: 6 June 2000 / Revision received: 9 October 2000 / Accepted: 9 October 2000  相似文献   

12.
The effect of Potato virus Y NTN (PVY) infection upon photosynthesis was analysed in transgenic Pssu-ipt tobacco overproducing endogenous cytokinins in comparison with control, nontransgenic Nicotiana tabacum plants. The course of the infection from the early to the late stage was monitored by measuring of photosynthetic gas exchange and fast chlorophyll (Chl) a fluorescence induction kinetics. Leaf photosynthesis was also analysed using Chl fluorescence imaging (Chl-FI). From the different fluorescence parameters obtained using Chl-FI, the nonphotochemical quenching (NPQ) proved to be the most useful parameter to assess the effect of PVY infection. On the other hand, Chl-FI was found to be inapplicable for any presymptomatic detection of PVY infection in tobacco. The lower accumulation of the virus was found in transgenic plants and corresponded also with the presence of visible symptoms of PVY infection. The net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) significantly decreased with the progress of the infection in both control plant types and transgenic rooted plants, while transgenic grafts were much less affected. The analysis of the Chl fluorescence transient revealed higher number of silent dissipative reaction centres, higher nonphotochemical dissipation, and significantly lower performance index, PI(abs), in the healthy transgenic grafts. Chl-FI also confirmed significantly higher NPQ in transgenic grafts.  相似文献   

13.
The induction kinetic of the chlorophyll (Chl) fluorescence and the Fv/Fm ratio have been tested in order to find out the suitability of this technique to evaluate damage caused by salinity in plants of Rosa hybrida cv. Ilseta grafted on R. manetti growing in a greenhouse under non-saturating irradiance. Under these conditions salinity induced changes in plants morphology, nutrient and Chl contents and in the gas exchange parameters, but not in the Fv/Fm ratio. The Rfd index did not reveal more information. The Fv/Fm ratio as well as the fluorescence induction curves were more affected by salinity when an irradiation stress was added, therefore as an indicator of salt stress in roses, Chl fluorescence is of limited use when the plants are grown without additional stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Dynamic thermal time model of cold hardiness for dormant grapevine buds   总被引:1,自引:0,他引:1  

Background and Aims

Grapevine (Vitis spp.) cold hardiness varies dynamically throughout the dormant season, primarily in response to changes in temperature. The development and possible uses of a discrete-dynamic model of bud cold hardiness for three Vitis genotypes are described.

Methods

Iterative methods were used to optimize and evaluate model parameters by minimizing the root mean square error between observed and predicted bud hardiness, using up to 22 years of low-temperature exotherm data. Three grape cultivars were studied: Cabernet Sauvignon, Chardonnay (both V. vinifera) and Concord (V. labruscana). The model uses time steps of 1 d along with the measured daily mean air temperature to calculate the change in bud hardiness, which is then added to the hardiness from the previous day. Cultivar-dependent thermal time thresholds determine whether buds acclimate (gain hardiness) or deacclimate (lose hardiness).

Key Results

The parameterized model predicted bud hardiness for Cabernet Sauvignon and Chardonnay with an r2 = 0·89 and for Concord with an r2 = 0·82. Thermal time thresholds and (de-)acclimation rates changed between the early and late dormant season and were cultivar dependent but independent of each other. The timing of these changes was also unique for each cultivar. Concord achieved the greatest mid-winter hardiness but had the highest deacclimation rate, which resulted in rapid loss of hardiness in spring. Cabernet Sauvignon was least hardy, yet maintained its hardiness latest as a result of late transition to eco-dormancy, a high threshold temperature required to induce deacclimation and a low deacclimation rate.

Conclusions

A robust model of grapevine bud cold hardiness was developed that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model parameters that produce the best fit also permit insight into dynamic differences in hardiness among genotypes.  相似文献   

15.
In recent years, combinatorial chemistry has had a significant impact on catalyst discovery in diverse fields. Proton-activated fluorescence (PAF) has been successfully demonstrated as a technique for effective screening of catalysts for electro-oxidation, enzymatic ester hydrolysis and nonenzymatic acyl transfer reactions. Among the working prototypes are screens for high-throughput assays of arrayed solid-state catalysts, dissolved enzymatic and small-molecule catalysts, as well as catalysts immobilized in solid-phase synthesis beads or polymeric gels. Given the range of reactions that may be set up to provide a change in local pH, the potential of PAF to facilitate catalyst discovery and process development is significant.  相似文献   

16.
Gramicidin D-treated chloroplasts show an acid-induced quenching of the chlorophyll fluorescence, which is composed of a reversible and irreversible part. The reversible quenching is analogous to the photo-induced quenching in coupled chloroplasts and can be taken to determine the light induced delta pH.  相似文献   

17.
Triazines and derivatives of phenylurea, which are often found in outdoor water samples, induce specific changes in the yield of thein-vivo chlorophyll -fluorescence of PSII. These changes are correlated quantitatively with the concentration of the herbicides and can therefore be used to set-up a low-price monitor system. In order to detect selectively the herbicide-sensitive part of the fluorescence emission a pulse amplitude modulated fluorimeter was used. The bioassay system was optimised with respect to test organism, growing and measuring conditions. The relationship between fluorescence yield and herbicide concentrations were experimentally determined for the triazines atrazine and simazine and the phenylurea herbicide DCMU and mathematically fitted (r=0.99). The I50-values were 0.9 µM for DCMU, 2.2 µM for simazine and 3.3 µM for atrazine. The detection limit of about 0.5 µM clearly shows that the sensitivity of this bioassay system is too low to reach the requirements of the drinking water regulation. However, due to its insensitivity against complex water matrices, there is good hope to combine this fluorometric bioassay with a potent herbicide preconcentration method like a solid-phase extraction procedure.Author for correspondence  相似文献   

18.
The use of functional fluorescent dyes has allowed us to monitor intracellular pH in individually identified cells in renal epithelia. Using video microscopy we simultaneously measured the change in intracellular pH in several contiguous cells in response to various maneuvers. The video equipment included a silicon intensified target camera, a VHS videocassette recorder, a high resolution monochrome monitor, a video photometric analyzer and a 2-channel chart recorder. This equipment had a spatial resolution of 1 micron by light microscopy and a response time of less than 200 ms; it allowed us to perform double fluorescent labeling and obtain reliable measurements of intracellular pH, independent of gain, regardless of the location of the image on the screen. Using this video system we have shown that there is substantial heterogeneity in activity of H+/HCO3- transport pathways among adjacent cells in a monolayer of cells cultured from the rat renal inner medullary collecting duct. In isolated perfused rabbit renal cortical collecting ducts, video microscopy allowed us to show that there are two different types of intercalated cells: one that exhibits apical Cl-/HCO3- exchange and one that does not. Both show alkaline intracellular pH with respect to non-acid-base transporting epithelia. Video microscopy has several advantages over conventional microspectrophotometry. It provides rapid data acquisition along with increased sensitivity and the capacity for some subcellular analyses. One is able to analyze several individually identified cells during an experimental maneuver. The present video system was assembled for less than $15,000 and permits a more complete analysis of an epithelium than either single-cell photometry or spectrophotometric analysis of thousands of cells in suspension or monolayers.  相似文献   

19.
Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method''s easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method.Key words: chlorophyll fluorescence, cold acclimation, electrolyte leakage, high-throughput screening, natural accessions  相似文献   

20.
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)‐mediated repression of bud–meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up‐regulation of VvA8H‐CYP707A4, which encodes ABA 8′‐hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H‐CYP707A4 within grape buds, (b) the VvA8H‐CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H‐CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H‐CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H‐CYP707A4 level in the bud is up‐regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA‐mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号