首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five synthetic fragments of the N-terminal domain of the α7 subunit of the human nicotinic acetylcholine receptor (α7 nAChR) that correspond to theoretically calculated B epitopes and T helper epitopes of the protein and contain from 16 to 29 amino acid residues were tested for the ability to stimulate the formation of antibodies in mice of three lines having H-2d, H-2b, and H-2k haplotypes of the major histocompatibility complex. It was shown that, in the free (unconjugated) form, all the peptides stimulate the formation of antibodies at least in one mouse line. Most of the peptides induced the formation of antibodies in BALB/c mice (haplotype H-2d); therefore, more detailed studies were carried out on these animals. The free peptides and/or their conjugates with keyhole limpet hemocyanin were demonstrated to be capable of stimulating the formation in BALB/c mice of antibodies that bind to the recombinant extracellular N-terminal domain of (α7 nAChRα. The epitope mapping of antipeptide antibodies carried out using truncated fragments helped reveal antipeptide antibodies to four regions of the α7 subunit: 1–23, 98–106, 159–168, and 173–188 (or 179–188).  相似文献   

2.
Cheffer A  Ulrich H 《Biochemistry》2011,50(11):1763-1770
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer's disease, on currents elicited by activation of rat α(3)β(4) nAChR heterologously expressed in KXα3β4R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 ± 0.2 μM and 4.3 ± 1.3 for the channel opening equilibrium constant, Φ(-1). Experiments were performed to investigate whether tacrine is able to activate the α(3)β(4) nAChR. Tacrine did not activate whole-cell currents in KXα3β4R2 cells but inhibited receptor activity at submicromolar concentration. Dose-response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 μM. The increase of Φ(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.  相似文献   

3.
Agonist concentration-response relationships at nicotinic postsynaptic receptors were established by measuring 86Rb+ efflux from acetylcholine receptor rich native Torpedo membrane vesicles under three different conditions: integrated net ion efflux (in 10 s) from untreated vesicles, integrated net efflux from vesicles in which most acetylcholine sites were irreversibly blocked with alpha-bungarotoxin, and initial rates of efflux (5-100 ms) from vesicles that were partially blocked with alpha-bungarotoxin. Exposure to acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, or (-)-nicotine over 10(8)-fold concentration ranges results in bell-shaped ion flux response curves due to stimulation of acetylcholine receptor channel opening at low concentrations and inhibition of channel function at 60-2000 times higher concentrations. Concentrations of agonists that inhibit their own maximum 86Rb+ efflux by 50% (KB values) are 110, 211, 3.0, 39, and 8.9 mM, respectively, for the agonists listed above. For acetylcholine and carbamylcholine, KB values determined from both 10-s and 15-ms efflux measurements are the same, indicating that the rate of agonist-induced desensitization increases to maximum at concentrations lower than those causing self-inhibition. For all partial and full agonists studied, Hill coefficients for self-inhibition are close to 1.0. Concentrations of agonists up to 8 times KB did not change the order parameter reported by a spin-labeled fatty acid incorporated in Torpedo membranes. We conclude that agonist self-inhibition cannot be attributed to a general nonspecific membrane perturbation. Instead, these results are consistent with a saturable site of action either at the lipid-protein interface or on the acetylcholine receptor protein itself.  相似文献   

4.
A set of seven peptides constituting the various loops and most of the surface areas of α-bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47).  相似文献   

5.
A structural characterization of a synthetic peptide corresponding to the fourth transmembrane domain (M4-TMD) of the γ-subunit of the nicotinic acetylcholine receptor from Torpedo californica has been undertaken. Solid-state NMR and CD spectroscopy studies indicate that upon reconstitution into lipid vesicles or magnetically aligned lipid bilayers, the synthetic M4-TMD adopts a linear α-helical conformation with the helix aligned within 15° of the membrane normal. Furthermore, analysis of the motional averaging of anisotropic interactions present in the solid-state NMR spectra of the reconstituted peptide, indicate that the dynamics of the peptide within the bilayer are highly sensitive to the phase adopted by the lipid bilayer, providing an insight into how the interaction of lipids with this domain may play a important role in the modulation of this receptor by its lipid environment.  相似文献   

6.
7.
α7 nicotinic receptors are highly permeable to Ca2+ as well as monovalent cations. We extended the characterization of the Ca2+ permeation of non-desensitizing chick α7 receptors (S240T/L247T α7 nAChRs) expressed in Xenopus oocytes by (1) measuring the concentration dependence of conductance under conditions in which Ca2+ or Ba2+ were the only permeant cations in the extracellular solution, and (2) measuring the concentration dependence of Ca2+ block of K+ currents through the receptors. The first set of experiments yielded an apparent affinity of 0.96 mM Ca2+ activity (2.4 mM concentration) for Ca2+ permeation and an apparent affinity of 0.65 mM Ba2+ activity (1.7 mM concentration) for Ba2+ permeation. The apparent affinity of Ca2+ inhibition of K+ currents was 0.49 mM activity (1.5 mM concentration). The similarity of these apparent affinities in the millimolar range suggests that the pore of α7 receptors has one or more low-affinity Ca2+ binding sites and no high-affinity sites.  相似文献   

8.
We introduce the term ‘silent agonists’ to describe ligands that can place the α7 nicotinic acetylcholine receptor (nAChR) into a desensitized state with little or no apparent activation of the ion channel, forming a complex that can subsequently generate currents when treated with an allosteric modulator. KC-1 (5′-phenylanabaseine) was synthesized and identified as a new silent agonist for the α7 nAChR; it binds to the receptor but does not activate α7 nAChR channel opening when applied alone, and its agonism is revealed by co-application with the type II positive allosteric modulator PNU-120596 in the Xenopus oocyte system. The concise synthesis was accomplished in three steps with the C–C bonds formed via Pd-catalyzed mono-arylation and organolithium coupling with N-Boc piperidinone. Comparative structural analyses indicate that a positive charge, an H-bond acceptor, and an aryl ring in a proper arrangement are needed to constitute one class of silent agonist for the α7 nAChR. Because silent agonists may act on signaling pathways not involving ion channel opening, this class of α7 nAChR ligands may constitute a new alternative for the development of α7 nAChR therapeutics.  相似文献   

9.
This study reports the comparative molecular modeling, docking and dynamic simulations of human α9α10 nicotinic acetylcholine receptors complexed with acetylcholine, nicotine and α-conotoxin RgIA, using as templates the crystal structures of Aplysia californica and Lymnaea stagnalis acetylcholine binding proteins. The molecular dynamics simulations showed that Arg112 in the complementary α10(?) subunit, is a determinant for recognition in the site that binds small ligands. However, Glu195 in the principal α9(+), and Asp114 in the complementary α10(?) subunit, might confer the potency and selectivity to α-conotoxin RgIA when interacting with Arg7 and Arg9 of this ligand.  相似文献   

10.
11.
Arias HR  Gu RX  Feuerbach D  Guo BB  Ye Y  Wei DQ 《Biochemistry》2011,50(23):5263-5278
The pharmacological activity of a series of novel amide derivatives was characterized on several nicotinic acetylcholine receptors (AChRs). Ca(2+) influx results indicate that these compounds are not agonists of the human (h) α4β2, α3β4, α7, and α1β1γδ AChRs; compounds 2-4 are specific positive allosteric modulators (PAMs) of hα7 AChRs, whereas compounds 1-4, 7, and 12 are noncompetitive antagonists of the other AChRs. Radioligand binding results indicate that PAMs do not inhibit binding of [(3)H]methyllycaconitine but enhance binding of [(3)H]epibatidine to hα7 AChRs, indicating that these compounds do not directly, but allosterically, interact with the hα7 agonist sites. Additional competition binding results indicate that the antagonistic action mediated by these compounds is produced by direct interaction with neither the phencyclidine site in the Torpedo AChR ion channel nor the imipramine and the agonist sites in the hα4β2 and hα3β4 AChRs. Molecular dynamics and docking results suggest that the binding site for compounds 2-4 is mainly located in the inner β-sheet of the hα7-α7 interface, ~12 ? from the agonist locus. Hydrogen bond interactions between the amide group of the PAMs and the hα7 AChR binding site are found to be critical for their activity. The dual PAM and antagonistic activities elicited by compounds 2-4 might be therapeutically important.  相似文献   

12.
1.  The effects of the odorant compounds adenosine-5-monophosphate (5AMP), ammonium, betaine, L-cysteine, L-glutamate, DL-succinate, and taurine and of mixtures of these comounds on binding of taurine and 5AMP to dendritic membrane from the olfactory organ of spiny lobsters (Panulirus argus) were quantified to evaluate the contribution of inhibition of odorant-receptor binding to the generation of physiological responses to mixtures.
2.  Taurine binding sites belong to two affinity classes, while 5AMP binding sites belong to a single affinity class. Binding of either taurine or 5AMP was partially inhibited in an apparently noncompetitive, concentration dependent fashion by most odorant compounds, with 25–40 % inhibition by 1 mM of odorant. Mixtures of two or more odorant compounds also inhibited binding of taurine or 5AMP to its sites. However, the inhibition by mixtures was often significantly less than expected from the inhibition produced by a mixture's components assuming either a noncompetitive or competitive mechanism.
3.  By including this binding inhibition between compounds into models for predicting physiological responses to mixtures from the responses to the components, the predictive power of the models is significantly improved. This result strongly suggests that binding inhibition can influence the physiological responsiveness of chemoreceptor cells to mixtures.
  相似文献   

13.
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.  相似文献   

14.
Neuronal nicotinic acetylcholine receptors (nAChRs) are hetero- and homopentamers built up by nine different alpha-subunits and three different beta-subunits. The subtype composition within the receptor determines ligand specificity, affinity and cation permeability. In this study we focused on the distribution of the ligand binding alpha-subunits in the rat arterial system by means of RT-PCR and immunohistochemistry. Subtypes alpha3, alpha5, alpha7 and alpha10 were found to be expressed by endothelial cells, suggesting that they are equipped both with calcium-preferring (alpha7 homopentamers) and monovalent cation-preferring (heteropentamers containing alpha3- and alpha5-subunits) nAChR channels. All alpha-subtypes except alpha9 were expressed by vascular smooth muscle cells with a highly specific distribution pattern along the vascular tree. While every alpha-subunit except alpha9 was detected in the thoracic aorta, intrapulmonary arterial branches contained only alpha7 immunoreactivity, and other vascular beds held intermediate positions with respect to the extent of alpha-subunit expression. Current knowledge does not allow to correlate these distribution patterns to specific functions, but it can be anticipated that at least some components of nAChR-mediated signalling in the arterial wall are highly specific for individual arteries.  相似文献   

15.
16.
The interaction of tricyclic antidepressants with the human (h) α4β2 nicotinic acetylcholine receptor in different conformational states was compared with that for the noncompetitive antagonist mecamylamine by using functional and structural approaches. The results established that: (a) [3H]imipramine binds to hα4β2 receptors with relatively high affinity (Kd = 0.83 ± 0.08 μM), but imipramine does not differentiate between the desensitized and resting states, (b) although tricyclic antidepressants inhibit (±)-epibatidine-induced Ca2+ influx in HEK293-hα4β2 cells with potencies that are in the same concentration range as that for (±)-mecamylamine, tricyclic antidepressants inhibit [3H]imipramine binding to hα4β2 receptors with affinities >100-fold higher than that for (±)-mecamylamine. This can be explained by our docking results where imipramine interacts with the leucine (position 9′) and valine (position 13′) rings by van der Waals contacts, whereas mecamylamine interacts electrostatically with the outer ring (position 20′), (c) van der Waals interactions are in agreement with the thermodynamic results, indicating that imipramine interacts with the desensitized and resting receptors by a combination of enthalpic and entropic components. However, the entropic component is more important in the desensitized state, suggesting local conformational changes. In conclusion, our data indicate that tricyclic antidepressants and mecamylamine efficiently inhibit the ion channel by interacting at different luminal sites. The high proportion of protonated mecamylamine calculated at physiological pH suggests that this drug can be attracted to the channel mouth before binding deeper within the receptor ion channel finally blocking ion flux.  相似文献   

17.
In this mini review we will focus on those molecular and cellular mechanisms exerted by bupropion (BP), ultimately leading to the antidepressant and anti-nicotinic properties described for this molecule. The main pharmacological mechanism is based on the fact that BP induces the release as well as inhibits the reuptake of neurotransmitters such as a dopamine (DA) and norepinephrine (NE). Additional mechanisms of action have been also determined. For example, BP is a noncompetitive antagonist (NCA) of several nicotinic acetylcholine receptors (AChRs). Based on this evidence, the dual antidepressant and anti-nicotinic activity of BP is currently considered to be mediated by its stimulatory action on the DA and NE systems as well as its inhibitory action on AChRs. Considering the results obtained in the archetypical mouse muscle AChR, a sequential mechanism can be hypothesized to explain the inhibitory action of BP on neuronal AChRs: (1) BP first binds to AChRs in the resting state, decreasing the probability of ion channel opening, (2) the remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process, and (3), BP interacts with a binding domain located between the serine (position 6′) and valine (position 13′) rings that is shared with the NCA phencyclidine and other tricyclic antidepressants. This new evidence paves the way for further investigations using AChRs as targets for the action of safer antidepressants and novel anti-addictive compounds.  相似文献   

18.
We have carried out a pharmacological evaluation of arylmethylene quinuclidine derivatives interactions with human α3β4 nAChRs subtype, using cell-based receptor binding, calcium-influx, electrophysiological patch-clamp assays and molecular modeling techniques. We have found that the compounds bind competitively to the α3β4 receptor with micromolar affinities and some of the compounds behave as non-competitive antagonists (compounds 1, 2 and 3), displaying submicromolar IC50 values. These evidences suggest a mixed mode of action for these compounds, having interactions at the orthosteric site and more pronounced interactions at an allosteric site to block agonist effects. One of the compounds, 1-benzyl-3-(diphenylmethylene)-1-azoniabicyclo[2.2.2]octane chloride (compound 3), exhibited poorly reversible use-dependent block of α3β4 channels. We also found that removal of a phenyl group from compound 1 confers a partial agonism to the derived analog (compound 6). Introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative (compound 7) increases agonism potency at the α3β4 receptor subtype. Docking into the orthosteric binding site of a α3β4 protein structure derived by comparative modeling accurately predicted the experimentally-observed trend in binding affinity. Results supported the notion that binding requires a hydrogen bond formation between the ligand basic nitrogen and the backbone carbonyl oxygen atom of the conserved Trp-149.  相似文献   

19.
A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on human α7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles), or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand-binding domain residue Gln-57, a residue hypothesized to be proximate to the aryl group of the bound agonist and a putative hydrogen bonding partner. Q57K, Q57D, Q57E, and Q57L were chosen to remove the dual hydrogen bonding donor/acceptor ability of Gln-57 and replace it with hydrogen bond donating, hydrogen bond accepting, or nonhydrogen bonding ability. Activation of the receptor was compromised with hydrogen bonding mismatches, for example, pairing a pyrrole with Q57K or Q57L, or a furan anabaseine with Q57D or Q57E. Ligand co-applications with the positive allosteric modulator PNU-120596 produced significantly enhanced currents whose degree of enhancement was greater for 2-furans or -pyrroles than for their 3-substituted isomers, whereas the nonhydrogen bonding thiophenes failed to show this correlation. Interestingly, the PNU-120596 agonist co-application data revealed that for wild-type α7 nAChR, the 3-furan desensitized state was relatively stabilized compared with that of 2-furan, a reversal of the relationship observed with respect to the barrier for entry into the desensitized state. These data highlight the importance of hydrogen bonding on the receptor-ligand state, and suggest that it may be possible to fine-tune features of agonists that mediate state selection in the nAChR.  相似文献   

20.
A series of α7 neuronal nicotinic acetylcholine receptor ligands were designed based on a structural combination of a potent, but non-selective ligand, epibatidine, with a selective lead structure, 2. Three series of compounds in which aryl moieties were attached via a linker to different positions on the core structure were studied. A potent and functionally efficacious analog, (3aR,6aS)-2-(6-phenylpyridazin-3-yl)-5-(pyridin-3-ylmethyl)octahydropyrrolo[3,4-c]pyrrole (3a), was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号