首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilirubin–albumin solution gave an emission spectrum in the wavelength range 500–600 nm with emission maxima at 528 nm when excited at 487 nm. The magnitude of fluorescence intensity increased on increasing bilirubin/albumin molar ratio. At three different albumin concentrations, namely, 1.0, 2.5 and 10.0 μM, there was an initial linear increase in fluorescence up to a molar ratio 1.0 in all cases beyond which it sloped off or decreased. This fluorescence enhancement was used to calculate the binding parameters of bilirubin–albumin interaction and the value of binding constant was found to be 1.72×107 l/mol similar to the published values obtained with other methods. Different serum albumins, namely, human (HSA), goat (GSA), pig (PSA) and dog serum albumins (DSA) bound bilirubin with almost the same affinity when studied by the technique of fluorescence enhancement. Bilirubin–albumin interaction was also studied at different pH and ionic strengths. There was a decrease in bilirubin–albumin complex formation on either decreasing the pH from 9.0 to 7.0 or increasing the ionic strength from 0.15 to 1.0. These results suggest that the technique of fluorescence enhancement can be used successfully to study the bilirubin–albumin interaction.  相似文献   

2.
3.
A method is described for the measurement of 5,5-diphenylbarbituric acid in plasma using high-performance liquid chromatography with UV detection. Briefly, the compounds are separated on a C18 reversed-phase column using a mobile phase of 50 mM sodium acetate (pH 4.5) and methanol. The flow-rate is 1.0 ml/min and 25 μl are injected and detected at 215 nm. The method is specific and sensitive in the range of concentrations tested, with a limit of quantification of 0.25 μg/ml. The calibration curves are linear for concentrations between 0.25 and 10 μg/ml. Intra-day and inter-day coefficients of variation are less than 8.5 and 10.5%, respectively, over the linear range. Intra-day and inter-day bias are less than 7.0 and 8.0%, respectively. A pharmacokinetic study conducted in male Beagle dogs administered 10 mg/kg of 1,3-dimethoxymethyl-5,5-diphenylbarbituric acid or 8 mg/kg of 5,5-diphenylbarbituric acid intravenously demonstrates the utility of this method.  相似文献   

4.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

5.
Structural competition involving G-quadruplex DNA and its complement   总被引:3,自引:0,他引:3  
Li W  Miyoshi D  Nakano S  Sugimoto N 《Biochemistry》2003,42(40):11736-11744
Structural competition between the G-quadruplex, the I-motif, and the Watson-Crick duplex has been implicated for repetitive DNA sequences, but the competitive mechanism of these multistranded structures still needs to be elucidated. We investigated the effects of sequence context, cation species, and pH on duplex formation by the G-quadruplex of dG(3)(T(2)AG(3))(3) and its complement the I-motif of d(C(3)TA(2))(3)C(3), using ITC, DSC, PAGE, CD, UV, and CD stopped-flow kinetic techniques. ITC and PAGE experiments confirmed Watson-Crick duplex formation by the complementary strands. The binding constant of the two DNA strands in the presence of 10 mM Mg(2+) at pH 7.0 was shown to be 5.28 x 10(7) M(-1) at 20 degrees C, about 400 times larger than that in the presence of 100 mM Na(+) at pH 5.5. The dynamic transition traces of the duplex formation from the equimolar mixture of G-/C-rich complementary sequences were obtained at both pH 7.0 and pH 5.5. Fitting to a single-exponential function gave an observed rate of 8.06 x 10(-3) s(-1) at 20 degrees C in 10 mM Mg(2+) buffer at pH 7.0, which was about 10 times the observed rate at pH 5.5 under the same conditions. Both of the observed rates increased as temperature rose, implying that the dissociation of the single-stranded structured DNAs is the rate-limiting step for the WC duplex formation. The difference between the apparent activation energy at pH 7.0 and that at pH 5.5 reflects the fact that pH significantly influences the structural competition between the G-quadruplex, the I-motif, and the Watson-Crick duplex, which also implies a possible biological role for I-motifs in biological regulation.  相似文献   

6.
In our previous work [(1993) FEBS Lett. 313, 248-250; (1993) Biochem. Int. 30,461-469] M-intermediate formation of wild-type bacteriorhodopsin was shown to involve two components differing in time constants (τ1 = 60–70 μs and τ2 = 220–250 μs), which were suggested to reflect two independent pathways of M-intermediate formation. The contribution of the fast M was 4-times higher than the slow one. Our present research on M-intermediate formation in the D115N bacteriorhodopsin mutant revealed the same components but at a contribution ratio of 1:1. Upon lowering the pH, the slow phase of M-formation vanished at a pK of 6.2, and in the pH region 3.0–5.5 only the M-intermediate with a rise time of 60 μs was present. A 5–6 h incubation of D115N bacteriorhodopsin at pH 10.6 resulted in the irreversible transformation of 50% of the protein into a form with a difference absorbance maximum at 460 nm. This form was stable at pH 7.5 and had no photocycle, including M-intermediate formation. The remaining bacteriorhodopsin contained 100% fast M-intermediate. The disappearance of the 250-μs phase concomitant with bR460 formation indicates that at neutral pH bacteriorhodopsin exists as two spectroscopically indistinguishable forms.  相似文献   

7.
Arsenic (As)-contaminated soil and water vary with pH and concentrations of As and P. This study examined the effects and interactions of three factors, pH, As and P, on As hyperaccumulator Pteris vittata L. to optimize plant growth and maximize As removal from contaminated sites, especially water. Two sets of hydroponic experiments were conducted using three-factor, five-level central composite design. Five levels of pH (4.5–8.0), As (0–668 μM), and P (0–1000 μM) were used to understand their individual as well as interactive effects. Plant biomass and uptake of P and As were impacted by all the three factors. Phosphorus inhibited As uptake at all concentrations, whereas As below 334 μM benefited plant growth and P uptake. Enhanced plant biomass was most likely a result of increased P uptake. Low pH enhanced plant uptake of As (pH≤5.21) and P (pH≤6.25). The fern had a relatively high biomass and P uptake at low pH/low As or high pH/high As. The referencing saddle points (turning points) were pH 6.33 and As 359 μM for plant biomass and pH 5.87 and As 331 μM for P uptake based on the response surface plot. The results suggested that optimum plant growth could be achieved by adjusting pH corresponding to As levels in the growth media, and maximum plant As hyperaccumulation by maintaining minimum P concentrations with medium pH≤5.21. Our results should be useful for developing strategies to remediate As-contaminated water using Chinese Brake fern.  相似文献   

8.
The influence of the pH of the mobile phase with some modifiers on the chromatographic behavior and fluorescence properties of closantel have been investigated. At acidic pH values (2–6), the benzamide moiety of the closantel forms a six-membered ring by hydrogen bonding and possesses a native fluorescence. Using the fluorescence emission of closantel at λex=335 nm, λem=510 nm, and pH 2.5 of the mobile phase, a linear calibration curve was estimated over a concentration range of about two orders of magnitude with a correlation coefficient larger than 0.992. The limit of the fluorescence detection was 10 μg/kg. This value was at least 10 times lower than that using UV detection. The method was applied to the determination of closantel in plasma and tissue samples, purified by a solid-phase extraction with C18 cartridges.  相似文献   

9.
This paper suggests a simple modification of the Ellman procedure when used to measure accurate changes in sulfhydryl (-SH) content induced by reactive oxygen intermediates (ROI). This modification became necessary when we found that the standard technique did not produce time invariant results in the presence of ROI-generating systems. Cysteine (cys; 20–100 μM) in 20 mM imidazole buffer (pH 7.0) containing 1.0 mM EDTA was reacted with excess (0.2 mM) 5,5′-dithiobis(2-nitrobenzoic acid), DTNB. The absorbance of the product (p-nitrothiophenol anion) was recorded at 412 nm (A412). This A412 was stable for 60 min and gave a linear relationship with cys concentrations used. ROI were generated either by 0.01 U xanthine oxidase (XO) + 0.01–1.0 mM hypoxanthine (HX), 0.01–1.0 mM H2O2, or H2O2 + 100 μM FeSO4. In the presence of ROI, A412 decreased with time and its rate of decrease was dependent upon the concentration of components of the ROI-generating system. This time-dependent decrease in A412 was prevented completely by the addition of 100 U of catalase (CAT). Therefore, we modified the DTNB method as follows: -SH groups were reacted with ROI for 30 min; this was followed by the addition of 100 U of CAT to scavenge the excess unreacted ROI before the addition of DTNB to generate the product. Using this modification the ROI-induced decrease in A412 was stable with time and was linearly related to the cys concentration. We further tested the modified procedure using metallothionein (MT) as a substrate for the ROI-induced changes in -SH content. MT, at concentrations of 2.5, 5.0, and 7.5 μM, was treated with XO + 100 μM HX. Using the modified procedure, an average decrease (as compared to the untreated control) of 15, 22, and 33 μM in -SH content was observed consistently at the respective MT concentrations. However, without the modification in the procedure, these average decrease were 20, 38, and 51 μM, respectively and continued to further increase with time. These discrepancies could give rise to errors ranging from 28 to 35% or higher in determination of the ROI-induced decrease in the -SH groups of MT. This data suggests that scavenging the unreacted H2O2 with C prior to the addition of DTNB to the assay mixture gives a stable and accurate estimate of the ROI-induced oxidative damage to -SH groups.  相似文献   

10.
Geometry of tapered fiber sensors critically affects the response of an evanescent field sensor to cell suspensions. Single-mode fibers (nominally at 1300 nm) were tapered to symmetric or asymmetric tapers with diameters in the range of 3–20 μm, and overall lengths of 1–7 mm. Their transmission characteristics in air, water and in the presence of Escherichia coli (JM101 strain) at concentrations of 100, 1000, 7000 and 7 million cells/mL were measured in the 400–800 nm range and gave rich spectral data that lead to the following conclusions. (1) No change in transmission was observed due to E. coli with tapers that showed no relative change in transmission in water compared to air. (2) Tapers that exhibited a significant difference in transmission in water compared to air gave weak response to the presence of the E. coli. Of these, tapers with low waist diameters (6 μm) showed sensitivity to E. coli at 7000 cells/mL and higher concentration. (3) Tapers that showed modest difference in water transmission compared to air, and those that had small waist diameters gave excellent response to E. coli at 100–7000 cells/mL. In addition, mathematical modeling showed that: (1) at low wavelength (470 nm) and small waist diameter (6 μm), transmission with water in the waist region is higher than in air. (2) Small changes in waist diameter (0.05 μm) can cause larger changes in transmission at 470 nm than at 550 nm at waist diameter of 6 μm. (3) For the same overall geometry, a 5.5 μm diameter taper showed larger refractive index sensitivity compared to a 6.25 μm taper at 470 nm.  相似文献   

11.
The role of the heme propionate groups in determining the electron transfer and electrostatic properties of myoglobin have been studied by thermodynamic, kinetic, and spectroscopic studies of horse heart myoglobin in which the heme propionate groups are esterified. Spectroelectrochemical analysis has established that the Em,7 of dimethylester heme-substituted Mb (DME-Mb) (Em,7 = 100.2(2) mV vs. NHE (Normal Hydrogen Electrode) (25 °C) is increased  40 mV relative to that of the native protein with ΔH° = −12.9(2) kcal/mol and Δ = −51.0(8) cal/mol/deg (pH 7.0, μ = 0.1 M (phosphate)). The second order rate constant for reduction of DME-metMb by Fe(EDTA)2− is increased  > 400-fold relative to that for reduction of native metMb to a value of 1.34(2) × 103 M−1 s−1 with ΔS = −13(1) cal/mol/deg and ΔH = 9.2(3) (pH 7.0, μ = 0.1 M (phosphate)). Analysis of the pH dependences of the reduction potential and rate constant for reduction by Fe(EDTA)2− demonstrates that heme propionate esterification introduces significant changes into the electrostatic interactions in myoglobin. These changes are also manifested by differences in the pH dependences of the 1H NMR spectra of native and DME-metMb that reveal shifts in pKa values for specific His residues as the result of heme propionate esterification. In sum, the current results establish that heme propionate esterification not only affects the electron transfer properties of myoglobin but also influences the titration behavior of specific His residues.  相似文献   

12.
Although phenanthridine has been frequently used as a specific substrate for the assessment of aldehyde oxidase activity, the use of this method is questionable due to a lower limit of detection and its validity for kinetic studies. In the present study, a novel sensitive multivariate calibration method based on partial least squares (PLS) has been developed for the measurement of aldehyde oxidase activity using phenanthridine as a substrate. Phenanthridine and phenanthridinone binary mixtures were prepared in a dynamic linear range of 0.1–30.0 μM and the absorption spectra of the solutions were recorded in the range of 210–280 nm in Sorenson's phosphate buffer (pH 7.0) containing EDTA (0.1 mM). The optimized PLS calibration model was used to calculate the concentration of each chemical in the prediction set. Hepatic rat aldehyde oxidase was partially purified and the initial oxidation rates of different concentrations of phenanthridine were calculated using the PLS method. The values were used for calculating Michaelis–Menten constants from a Lineweaver–Burk double reciprocal plot of initial velocity against the substrate concentration. The limits of detection for phenanthridine and phenanthridinone were found to be 0.04 ± 0.01 and 0.03 ± 0.01 μM (mean ± SD, n = 5), respectively. Using this method, the Km value for the oxidation of phenanthridine was calculated as 1.72 ± 0.09 μM (mean ± SD, n = 3). Thus, this study describes a novel spectrophotometric method that provides a suitable, sensitive and easily applicable means of measuring the kinetics of phenanthridine oxidation by aldehyde oxidase without the need for expensive instrumentation.  相似文献   

13.
A column-switching, reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of a new carbapenem antibiotic assay using ultraviolet detection has been developed for a new carbapenem antibiotic L-749,345 in human plasma and urine. A plasma sample is centrifuged and then injected onto an extraction column using 25 mM phosphate buffer, pH 6.5. After 3 min, using a column-switching valve, the analyte is back-flushed with 10.5% methanol–phosphate buffer for 3 min onto a Hypersil 5 μm C18 BDS 100×4.6 mm analytical column and then detected by absorbance at 300 nm. The sample preparation and HPLC conditions for the urine assay are similar, except for a longer analytical column 150×4.6 mm. The plasma assay is specific and linear from 0.125 to 50 μg/ml; the urine assay is linear from 1.25 to 100 μg/ml.  相似文献   

14.
High-performance liquid chromatographic assay for cefepime in serum   总被引:6,自引:0,他引:6  
A simple, rapid, specific and sensitive high-performance liquid chromatographic method was developed for the determination of cefepime 1-[[6R, 7R)-7-[2-(2-amino-4-thiazolyl)glyoxylamido]-2-carboxy-8-oxo-5-thia-1-azabicyclo-[4.2.0] oct-2-en-3-yl]methyl]-1-methylpyrrolidinium hydroxide, inner salt, 72-(Z)-(O-methyloxime) in human serum. Separation was achieved on a reversed-phase Ultrasphere XL-ODS column (75×4.6 mm I.D.). The mobile phase was 7% acetonitrile in 20 mM ammonium acetate (pH 4). Cefepime eluted in the range of 1.8–2.2 min. Detection was by UV absorbance at 254 nm. The lower limit of quantitation of cefepime in plasma was 0.5 μg/ml. The average absolute recovery was 106.2±2.1%. The linear range was from 0.1 to 50 μg/ml, with a correlation coefficient greater than 0.999. The within-day C.V.s for human samples were 4.9 and 2.3% for 1 and 50 μg/ml, respectively. The between-day C.V.s for human serum samples were 14.5, 7.4 and 6.7 for 1, 25 and 50 μg/ml, respectively. Cefepime was found to be unstable in serum at room temperature. For delayed assay, samples must be stored at −80°C.  相似文献   

15.
Objective: We analyse the effect of aldosterone on vasomotor response induced by electrical field stimulation (EFS) in mesenteric arteries from Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Results: Aldosterone (0.001–1 μM) reduced vasoconstrictor response to EFS in a dose- and time-dependent manner only in SHR. Thus, the rest of experiments were performed only in SHR. Aldosterone did not affect either noradrenaline response or release. Effect of aldosterone (1 μM) on EFS response was not affected by NG-nitro-arginine-methyl esther (100 μM), and was abolished by capsaicin (0.5 μM) and the calcitonin gene-related peptide antagonist (CGRP 8–37, 0.5 μM). Calcitonin gene-related peptide (0.1 nM–0.1 μM) induced a concentration-dependent relaxation, which was enhanced by aldosterone (1 μM). Incubation with either spironolactone (1 μM), glibenclamide (10 μM), RU 486 10 μM, ODQ (10 μM) or cycloheximide (10 μM) significantly reduced the enhancement of CGRP-relaxation produced by aldosterone, while remained unmodified by SQ 22,536. Conclusions: Aldosterone decreases the vasoconstrictor response to EFS in mesenteric arteries from SHR but not from WKY. This effect is mediated by an increased response to the sensory neurotransmitter CGRP, substantially, through glucocorticoid receptors activation. Furthermore, this effect is mediated by an increase of cGMP synthesis and ATP-dependent potassium channel activation.  相似文献   

16.
Anti-allergic substances from the rhizomes of Dioscorea membranacea   总被引:2,自引:0,他引:2  
Extracts of five species of Thai medicinal plants, locally known as Hua-Khao-Yen, were screened for anti-allergic activities using RBL-2H3 cells. Of the five species studied, the ethanolic extract of Dioscorea membranacea exhibited potent inhibitory activity against β-hexosaminidase release as a marker of degranulation in RBL-2H3 cells, with an IC50 value of 37.5 μg/mL. Eight compounds were isolated from this crude ethanolic extract, [two naphthofuranoxepins (1, 2), one phenanthraquinone (3), three steroids (4–6), and two steroidal saponins (7, 8)], and tested for their anti-allergic activities. The results showed that dioscorealide B (2) possessed the highest activity with an IC50 value of 5.7 μM, followed by dioscoreanone (3, IC50 = 7.7 μM), dioscorealide A (1, IC50 = 27.9 μM), and diosgenin (9, IC50 = 29.9 μM). Structure–activity relationship studies of naphthofuranoxepins on anti-allergic activity revealed that the hydroxylation at position 8 conferred higher activity than methoxylation. For diosgenin derivatives, the aglycone was found to possess higher activity than the diglucosylated molecule; whereas substitution with rhamnoglucosides apparently results in loss of activity. Furthermore, effects of dioscorealide A, dioscorealide B, and dioscoreanone on antigen-induced release of TNF- and IL-4 in the late phase reaction were also examined.  相似文献   

17.
A simple HPLC method with photodiode-array (PDA) ultraviolet detection was developed for the simultaneous determination of four active polyphenol components of hawthorn (Crataegus), chlorogenic acid, epicatechin, hyperoside and isoquercitrin, in rat plasma. Following extraction from the plasma samples with ethyl acetate–methanol (2:1, v/v), these four compounds were successfully separated using a C18 column with a gradient elution of 5 and 25% acetonitrile in 25 mM phosphate buffer (pH 2.4). The flow-rate was set at 1 ml/min and the eluent was detected at 325 nm for chlorogenic acid, 278 nm for epicatechin, and 360 nm for both hyperoside and isoquercitrin. Narignin (0.82 μg) was used as the internal standard and was detected at 278 nm. The method is linear over the studied range of 0.16–40, 0.63–160, 0.13–32 and 0.13–30 μg/ml for chlorogenic acid, epicatechin, hyperoside and isoquercitrin, respectively. The correlation coefficient for each analyte was greater than 0.995. The intra-day and inter-day precision of the analysis was better than 4 and 7%, respectively. The extraction recoveries at low to high concentration were greater than 85% for both epicatechin and chlorogenic acid, and greater than 94% for both hyperoside and isoquercitrin. The detection limits were 0.04, 0.20, 0.03 and 0.03 μg/ml for chlorogenic acid, epicatechin, hyperoside and isoquercitrin. The developed method was used to analyze the plasma concentrations of the four analytes after the intravenous administration of hawthorn polyphenol extract to rats.  相似文献   

18.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular DNA damage probably involving cellular iron accumulation. Retinol (7μM) significantly induced DNA single strands breaks, DNA fragmentation and production of 8-oxo-7, 8-dihydro-2'-deoxyguanosine in cultured Sertoli cells. In contrast, lower doses seemed not to induce single-strands break in this experimental model. The breaks in DNA were inhibited by an iron scavenger; and 7μM retinol treatment modulated iron turnover leading to iron accumulation, suggesting that iron ions were required for the retinol cellular effects. These findings suggest that retinol-induced DNA damage was associated with the modulation of iron turnover, and these characteristics could be responsible for the increased incidence of lung cancer associated with retinoids supplementation.  相似文献   

19.
An isocratic liquid chromatographic method employing one extraction step and a 150 mm × 4.6 mm I.D. Spherisorb ODS2, 3-μm HPLC column using UV-absorbance detection at 210 nm has been developed for the quantitation of felbamate and three felbamate metabolites in 0.100-ml aliquots of rat and dog plasmas. The linear quantitation range in rat plasma is 0.195–200 μg/ml for felbamate; 1.563–200 μg/ml for the p-hydroxy metabolite; 0.391–200 μg/ml for the 2-hydroxy metabolite; and 0.098–200 μg/ml for the monocarbamate metabolite. The linear quantitation range in dog plasma is 0.195–200 μg/ml for felbamate; 0.781–200 μg/ml for the p-hydroxy metabolite; 0.195–200 μg/ml for the 2-hydroxy metabolite; and 0.098–200 μg/ml for the monocarbamate metabolite.  相似文献   

20.
Ian M. Mller  John M. Palmer 《BBA》1981,638(2):225-233
(1) The optimum pH for the oxidation of exogenous NADH by mitochondria from both Jerusalem artichoke (Helianthus tuberosus) tubers and Arum maculatum spadices was 7.0–7.1. NADPH oxidation had a lower optimum pH of 6.6 in Arum and 6.0 in Jerusalem artichoke mitochondria. In both types of mitochondria the rates of NADH and NADPH oxidation were identical below pH 6.0–5.5. (2) It is shown conclusively that neither a phosphatase converting NADPH to NADH nor a nicotinamide nucleotide transhydrogenase was involved in the oxidation of NADPH by these mitochondria. (3) Palmitoyl-CoA, an inhibitor of transhydrogenase activity in mammalian mitochondria, inhibits both NADH and NADPH oxidation by plant mitochondria with a Ki of about 10 μM. (4) It is concluded that the known properties of NAD(P)H oxidation are best explained by assuming the presence of a second dehydrogenase specific for NADPH. At low pH, electron flow from the two dehydrogenases to oxygen shares a common rate-limiting step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号