首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.  相似文献   

2.
In nonsulfur purple bacteria, redox homeostasis is achieved by the coordinate control of various oxidation-reduction balancing mechanisms during phototrophic anaerobic respiration. In this study, the ability of Rhodobacter capsulatus to maintain a balanced intracellular oxidation-reduction potential was considered; in addition, interrelationships between the control of known redox-balancing systems, the Calvin-Benson-Bassham, dinitrogenase and dimethyl sulfoxide reductase systems, were probed in strains grown under both photoheterotrophic and photoautotrophic growth conditions. By using cbb(I) (cbb form I operon)-, cbb(II)-, nifH-, and dorC-reporter gene fusions, it was demonstrated that each redox-balancing system responds to specific metabolic circumstances under phototrophic growth conditions. In specific mutant strains of R. capsulatus, expression of both the Calvin-Benson-Bassham and dinitrogenase systems was influenced by dimethyl sulfoxide respiration. Under photoheterotrophic growth conditions, coordinate control of redox-balancing systems was further manifested in ribulose 1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase deletion strains. These findings demonstrated the existence of interactive control mechanisms that govern the diverse means by which R. capsulatus maintains redox poise during photoheterotrophic and photoautotrophic growth.  相似文献   

3.
4.
Photosynthetic bacteria are capable of carrying out the fundamental biological processes of carbon dioxide assimilation and photosynthesis. In this work, ensemble modeling (EM) was used to examine the behavior of mutant strains of the nonsulfur purple photosynthetic bacterium Rhodobacter sphaeroides containing a blockage in the primary CO(2) assimilatory pathway, which is responsible for cellular redox balance. When the Calvin-Benson-Bassham (CBB) pathway is nonfunctional, spontaneous adaptive mutations have evolved allowing for the use of at least two separate alternative redox balancing routes enabling photoheterotrophic growth to occur. The first of these routes expresses the nitrogenase complex, even in the presence of normal repressing ammonia levels, dissipating excess reducing power via its inherent hydrogenase activity to produce large quantities of hydrogen gas. The second of these routes may dissipate excess reducing power through reduction of sulfate by the formation of hydrogen sulfide. EM was used here to investigate metabolism of R. sphaeroides and clearly shows that inactivation of the CBB pathway affects the organism's ability to achieve redox balance, which can be restored via the above-mentioned alternative redox routes. This work demonstrates that R. sphaeroides is capable of adapting alternative ways via mutation to dissipate excess reducing power when the CBB pathway is inactive, and that EM is successful in describing this behavior.  相似文献   

5.
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC-LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC-LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC-LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC-LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC-LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC-LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.  相似文献   

6.
Abstract Two chlorate resistant mutants of Rhodobacter sphaeroides were isolated which were deficient in dimethylsulfoxide reductase activity. Immunoblotting experiments showed that the phenotype of these mutants and that of Rhodobacter capsulatus strain DK9, a mutant unable to reduce dimethylsulfoxide, was correlated with low or undetectable levels of the dimethylsulfoxide reductase apoprotein. All three mutants were complemented by a cosmid from a library of Rhodobacter sphaeroides genomic DNA. Further genetic complementation analysis revealed that functions required for restoration of dimethylsulfoxide reductase activity in the Rhodobacter sphaeroides mutants were encoded on an 9 kb EcoR1 DNA fragment derived from this cosmid. Expression of this 9 kb DNA fragment in Escherichia coli showed that it encoded the dimethylsulfoxide reductase structural gene of Rhodobacter sphaeroides .  相似文献   

7.
8.
Tao Y  Liu D  Yan X  Zhou Z  Lee JK  Yang C 《Journal of bacteriology》2012,194(2):274-283
The nonsulfur purple bacteria that exhibit unusual metabolic versatility can produce hydrogen gas (H(2)) using the electrons derived from metabolism of organic compounds during photoheterotrophic growth. Here, based on (13)C tracer experiments, we identified the network of glucose metabolism and quantified intracellular carbon fluxes in Rhodobacter sphaeroides KD131 grown under H(2)-producing conditions. Moreover, we investigated how the intracellular fluxes in R. sphaeroides responded to knockout mutations in hydrogenase and poly-β-hydroxybutyrate synthase genes, which led to increased H(2) yield. The relative contribution of the Entner-Doudoroff pathway and Calvin-Benson-Bassham cycle to glucose metabolism differed significantly in hydrogenase-deficient mutants, and this flux change contributed to the increased formation of the redox equivalent NADH. Disruption of hydrogenase and poly-β-hydroxybutyrate synthase resulted in a significantly increased flux through the phosphoenolpyruvate carboxykinase and a reduced flux through the malic enzyme. A remarkable increase in the flux through the tricarboxylic acid cycle, a major NADH producer, was observed for the mutant strains. The in vivo regulation of the tricarboxylic acid cycle flux in photoheterotrophic R. sphaeroides was discussed based on the measurements of in vitro enzyme activities and intracellular concentrations of NADH and NAD(+). Overall, our results provide quantitative insights into how photoheterotrophic cells manipulate the metabolic network and redistribute intracellular fluxes to generate more electrons for increased H(2) production.  相似文献   

9.
A transposon mutant of Rhodobacter capsulatus, strain Mal7, that was incapable of photoautotrophic and chemoautotrophic growth and could not grow photoheterotrophically in the absence of an exogenous electron acceptor was isolated. The phenotype of strain Mal7 suggested that the mutation was in some gene(s) not previously shown to be involved in CO(2) fixation control. The site of transposition in strain Mal7 was identified and shown to be in the gene nuoF, which encodes one of the 14 subunits for NADH ubiquinone-oxidoreductase, or complex I. To confirm the role of complex I and nuoF for CO(2)-dependent growth, a site-directed nuoF mutant was constructed (strain SBC1) in wild-type strain SB1003. The complex I-deficient strains Mal7 and SBC1 exhibited identical phenotypes, and the pattern of CO(2) fixation control through the Calvin-Benson-Bassham pathway was the same for both strains. It addition, it was shown that electron transport through complex I led to differential control of the two major cbb operons of this organism. Complex I was further shown to be linked to the control of nitrogen metabolism during anaerobic photosynthetic growth of R. capsulatus.  相似文献   

10.
The purple nonsulfur bacterium Rhodobacter capsulatus strain B10 grew phototrophically on the aromatic compound hippurate (N-benzoyl-L-glycine) and related benzoyl amino acids. Absorption spectra, extraction, and GC/MS analysis of culture supernatants showed that hippurate was stoichiometrically converted to benzoate and glycine, with the latter used as a carbon or nitrogen source for growth. This conclusion was supported by detection of the enzyme hippuricase in permeabilized intact cells. Chemotrophic growth on hippurate by Rba. capsulatus, either at full or reduced oxygen tensions, was not observed. The type strain of Rhodobacter sphaeroides as well as four strains of Rhodopseudomonas palustris also grew phototrophically on hippurate, while several other aromatic-degrading species of purple bacteria did not.  相似文献   

11.
A ribulose-1,5-bisphosphate carboxylase/oxygenase-deficient mutant strain (strain I-19) of Rhodospirillum rubrum was capable of growth under photoheterotrophic conditions in the absence of exogenous electron acceptors. These results suggested that alternative means of removing reducing equivalents have been acquired that allow this strain to remove reducing equivalents in the absence of a functional Calvin-Benson-Bassham reductive pentose phosphate pathway. Previously, the proton-reducing activity of the dinitrogenase complex was implicated in helping to maintain redox balance. However, since considerable amounts of CO2 were still fixed in this strain, the complete profile of enzymes involved in alternative CO2 fixation schemes was assessed. A specific and substantial induction of carbon monoxide dehydrogenase (CO dehydrogenase) synthesis was found in the mutant strain; although none of the other CO2 fixation pathways or enzyme activities were altered. These results suggested that CO dehydrogenase contributes to the photoheterotrophic success of strain I-19. Furthermore, the data implicate interacting and complex regulatory processes required to maintain the proper redox balance of this organism and other nonsulfur purple bacteria.  相似文献   

12.
The fnr gene encodes a regulatory protein involved in the response to oxygen in a variety of bacterial genera. For example, it was previously shown that the anoxygenic, photosynthetic bacterium Rhodobacter sphaeroides requires the fnrL gene for growth under anaerobic, photosynthetic conditions. Additionally, the FnrL protein in R. sphaeroides is required for anaerobic growth in the dark with an alternative electron acceptor, but it is not essential for aerobic growth. In this study, the fnrL locus from Rhodobacter capsulatus was cloned and sequenced. Surprisingly, an R. capsulatus strain with the fnrL gene deleted grows like the wild type under either photosynthetic or aerobic conditions but does not grow anaerobically with alternative electron acceptors such as dimethyl sulfoxide (DMSO) or trimethylamine oxide. It is demonstrated that the c-type cytochrome induced upon anaerobic growth on DMSO is not synthesized in the R. capsulatus fnrL mutant. In contrast to wild-type strains, R. sphaeroides and R. capsulatus fnrL mutants do not synthesize the anaerobically, DMSO-induced reductase. Mechanisms that explain the basis for FnrL function in both organisms are discussed.  相似文献   

13.
Flavocytochrome c-sulfide dehydrogenase (FCSD), an enzyme that catalyzes the reversible conversion of sulfide to elemental sulfur in vitro, is common to bacteria that utilize reduced sulfur compounds as electron donors in the process of carbon dioxide fixation. FCSD is a heterodimer containing two different cofactors, a flavin (FAD) and one or two heme c groups, located on the separate protein subunits. Efforts to produce the holoproteins of the soluble Allochromatium vinosum FCSD and the membrane-bound Ectothiorhodospira vacuolata protein in Escherichia coli using several expression systems were unsuccessful. Although all systems used were able to export the recombinant FCSDs to the periplasm, the proteins did not incorporate heme. In order to develop a new expression system involving photosynthetic hosts (Rhodobacter capsulatus, Rhodobacter sphaeroides and Ect. vacuolata), plasmid mobilisation from E. coli donors was studied. In the search for efficient promoters for such hosts, a system was developed combining the broad-host-range plasmid pGV910 and the promoter of the A. vinosum RuBisCo gene, rbcA. Conjugation was used to enable transfer from the expression plasmid of E. coli into Rba. capsulatus, Rba. sphaeroides strains and into Ect. vacuolata. Both Rhodobacter hosts were able to transcribe the genes coding for FCSD from the rbcA promoter and to produce detectable amounts of recombinant FCSD holoprotein. Western blots showed that the best production was obtained from cells grown photosynthetically on malate or acetate with sulfide. This system may prove to be of general use for the production of recombinant c-type cytochromes in homologous or related host systems.  相似文献   

14.
J Zilsel  T G Lilburn  J T Beatty 《FEBS letters》1989,253(1-2):247-252
A Rhodobacter capsulatus mutant strain deficient in all pigment-binding peptides and hence incapable of photosynthetic growth was genetically complemented with a plasmid-borne copy of the Rhodobacter sphaeroides puf operon. Hybrid reaction centers composed of R. sphaeroides L and M and R. capsulatus H subunits assembled in vivo, and host cells were photosynthetically competent. Light-harvesting complex B875, also encoded by the R. sphaeroides puf operon, was present along with the hybrid reaction center. These cells emitted fluorescence, however, indicating an impairment in energy transduction.  相似文献   

15.
The cytoplasmic pyrophosphatase from Rhodobacter sphaeroides was purified and characterized. The enzyme is a homodimer of 64 kDa. The N-terminus was sequenced and used to obtain the complete pyrophosphatase sequence from the preliminary genome sequence of Rba. sphaeroides, showing extensive sequence similarity to family II or class C pyrophosphatases. The enzyme hydrolyzes only Mg-PP(i) and Mn-PP(i) with a K(m) of 0.35 mM for both substrates. It is not activated by free Mg (2+), in contrast to the cytoplasmic pyrophosphatase from Rhodospirillum rubrum, and it is not inhibited by NaF, methylendiphosphate, or imidodiphosphate. This work shows that Rba. sphaeroides and Rhodobacter capsulatus cytoplasmic pyrophosphatases belong to family II, in contrast to Rsp. rubrum, Rhodopseudomonas palustris, Rhodopseudomonas gelatinosa, and Rhodomicrobium vannielii cytoplasmic pyrophosphatases which should be classified as members of family I. This is the first report of family II cytoplasmic pyrophosphatases in photosynthetic bacteria and in a gram-negative organism.  相似文献   

16.
The Rhodobacter sphaeroides genome contains two unlinked genetic regions each encoding a series of proteins involved in CO2 fixation which include phosphoribulokinase (prkA and prkB) and ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcLS and rbcR) (P. L. Hallenbeck and S. Kaplan, Photosynth. Res. 19:63-71, 1988; F. R. Tabita, Microbiol. Rev. 52:155-189, 1988). We examined the effect of CO2 in the presence and absence of an alternate electron acceptor, dimethyl sulfoxide, on the expression of rbcR and rbcLS in photoheterotrophically grown R. sphaeroides. The expression of both rbcR and rbcLS was shown to depend on the CO2 concentration when succinate was used as the carbon source. It was also demonstrated that CO2 fixation is critical for photoheterotrophic growth but could be replaced by the alternative reduction of dimethyl sulfoxide to dimethyl sulfide. Dimethyl sulfoxide severely depressed both rbcR and rbcLS expression in cells grown photoheterotrophically at CO2 concentrations of 0.05% or greater. However, cells grown photoheterotrophically in the absence of exogenous CO2 but in the presence of dimethyl sulfoxide had intermediate levels of expression of rbcL and rbcR, suggesting partially independent control by limiting CO2 tension. We also present evidence for the existence of two gene products, namely, CfxA and CfxB, which are encoded by genes immediately upstream of rbcLS and rbcR, respectively. Strains were constructed which contained null mutations in cfxA and/or cfxB. Each mutation eliminated expression of the linked downstream rbc operon. Further, studies utilizing these strains demonstrated that each form of ribulose 1,5-bisphosphate carboxylase/oxygenase plays an essential role in maintaining the cellular redox balance during photoheterotrophic growth at differing CO2 concentrations.  相似文献   

17.
Photosynthetic prokaryotes that assimilate CO2 under anoxic conditions may also grow chemolithoautotrophically with O2 as the electron acceptor. Among the nonsulfur purple bacteria, two species (Rhodobacter capsulatus and Rhodopseudomonas acidophilus), exhibit aerobic chemolithoautotrophic growth with hydrogen as the electron donor. Although wild-type strains of Rhodobacter sphaeroides grow poorly, if at all, with hydrogen plus oxygen in the dark, we report here the isolation of a spontaneous mutant (strain HR-CAC) of Rba. sphaeroides strain HR that is fully capable of this mode of growth. Rba. sphaeroides and Rba. capsulatus fix CO2 via the reductive pentose phosphate pathway and synthesize two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). RubisCO levels in the aerobic-chemolithoautotrophic-positive strain of Rba. sphaeroides were similar to those in wild-type strains of Rba. sphaeroides and Rba. capsulatus during photoheterotrophic and photolithoautotrophic growth. Moreover, RubisCO levels of Rba. sphaeroides strain HR-CAC approximated levels obtained in Rba. capsulatus when the organisms were grown as aerobic chemolithoautotrophs. Either form I or form II RubisCO was able to support aerobic chemolithoautotrophic growth of Rba. capsulatus strain SB 1003 and Rba. sphaeroides strain HR-CAC at a variety of CO2 concentrations, although form II RubisCO began to lose the capacity to support aerobic CO2 fixation at high O2 to CO2 ratios. The latter property and other facets of the physiology of this system suggest that Rba. sphaeroides and Rba. capsulatus strains may be effectively employed for the biological selection of RubisCO molecules of altered substrate specificity. Received: 8 August 1997 / Accepted: 26 December 1997  相似文献   

18.
The mechanism of acetate assimilation in the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate pathway, is studied. It is found that the growth of this bacterium in batch and continuous cultures and the assimilation of acetate in cell suspensions are not stimulated by bicarbonate. The consumption of acetate is accompanied by the excretion of glyoxylate and pyruvate into the medium, stimulated by glyoxylate and pyruvate, and inhibited by citramalate. The respiration of cells in the presence of acetate is stimulated by glyoxylate, pyruvate, citramalate, and mesaconate. These data suggest that the citramalate cycle may function in Rba. sphaeroides in the form of an anaplerotic pathway instead of the glyoxylate pathway. At the same time, the low ratio of fixation rates for bicarbonate and acetate exhibited by the Rba. sphaeroides cells (approximately 0.1), as well as the absence of the stimulatory effect of acetate on the fixation of bicarbonate in the presence of the Calvin cycle inhibitor iodoacetate, suggests that pyruvate synthase is not involved in acetate assimilation in the bacterium Rba. sphaeroides.  相似文献   

19.
Plasmids encoding the structural genes for the Rhodobacter capsulatus and Rhodobacter sphaeroides cytochrome (cyt) bc1 complexes were introduced into strains of R. capsulatus lacking the cyt bc1 complex, with and without cyt c2. The R. capsulatus merodiploids contained higher than wild-type levels of cyt bc1 complex, as evidenced by immunological and spectroscopic analyses. On the other hand, the R. sphaeroides-R. capsulatus hybrid merodiploids produced only barely detectable amounts of R. sphaeroides cyt bc1 complex in R. capsulatus. Nonetheless, when they contained cyt c2, they were capable of photosynthetic growth, as judged by the sensitivity of this growth to specific inhibitors of the photochemical reaction center and the cyt bc1 complex, such as atrazine, myxothiazol, and stigmatellin. Interestingly, in the absence of cyt c2, although the R. sphaeroides cyt bc1 complex was able to support the photosynthetic growth of a cyt bc1-less mutant of R. capsulatus in rich medium, it was unable to do so when C4 dicarboxylic acids, such as malate and succinate, were used as the sole carbon source. Even this conditional ability of R. sphaeroides cyt bc1 complex to replace that of R. capsulatus for photosynthetic growth suggests that in the latter species the cyt c2-independent rereduction of the reaction center is not due to a structural property unique to the R. capsulatus cyt bc1 complex. Similarly, the inability of R. sphaeroides to exhibit a similar pathway is not due to some inherent property of its cyt bc1 complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号