首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early life history of the viviparous scorpaenid,Sebastes inermis, in Sendai Bay, Japan, was studied and early development described. Newborn preflexion larvae ofS. inermis were about 5.2 mm BL. Notochord flexion occurred at 5.4–8.0 mm BL and transformation at 14–20 mm BL. Preflexion and flexion larvae ofS. inermis were distinguished from similar larvae by the pigmentation pattern along the dorsal and ventral midlines of the tail. Pigmentation inS. inermis was light throughout the larval and early juvenile periods. Planktonic larvae were particularly abundant in coastal waters of Sendai Bay but not offshore. Vertical and horizontal larval sampling indicated that early larvae occupied near surface waters and horizontal larval sampling indicated that early larvae shift to a benthic habitat occurred at about 12 mm BL, at the end of the postflexion larval period.Sebastes inermis do not have a distinct pelagic juvenile stage, unlike many North Pacific species ofSebastes.  相似文献   

2.
The larval and juvenile stages of Sebastes taczanowskii (Japanese name: Ezo-mebaru) are described and illustrated based on 33 wild specimens [7.1–26.9 mm in body length (BL)] collected in the Sea of Japan, and eight specimens of reared larvae extruded from the one specimen of a captive pregnant female. Larvae were extruded between 4.3–5.0 mm BL and notochord flexion occurred 5.7–9.0 mm BL. Transformation from postflexion larvae to pelagic juveniles occurred between 13 and 17 mm BL. Preflexion and flexion larvae have a single melanophore row on the dorsal surface on the tail, and an internal line of melanistic dashes on the ventral side of the tail. Lateral pigmentation of postflexion and transforming larval body surfaces are light. Compared with other Japanese rockfish species, S. taczanowskii is shallow-bodied throughout both larval and juvenile stages. We provide an identification key to preflexion and flexion stage rockfish larvae found around the Japanese archipelago, and comparisons with other species. Larval and juvenile S. taczanowskii occurred in both near-shore and relatively offshore water around Shakotan Peninsula-Ishikari Bay, Hokkaido in June and July.  相似文献   

3.
Larval and juvenile stages of kurosoi,Sebastes schlegeli, are described and illustrated from wild specimens. Some ecological aspects of larvae and juveniles are also described. Notochord flexion occurred between 5.6–7.5 mm SL. Transformation occurred between 13–20 mm SL. Preflexion and flexion larvae ofS. schlegeli can be distinguished from similar larvae by the pigmentation of the dorsal and ventral midlines of the tail and absence of pigmentation on the ventral portion of the rectum. After notochord flexion, the dorsal and lateral regions in both larvae and pelagic juveniles were heavily pigmented, suggesting adaptation for neustonic life style. Larvae and juveniles were caught at many coastal stations, but did not occur in cooler offshore waters. Larvae smaller than 20 mm SL inhabited surface waters. Until ca. 40 mm SL, juveniles inhabited mainly surface waters (without drifting seaweed), but also used other habitats, such as the drifting seaweed, and near the sea bed. Small larvae (<7 mm SL) fed mainly on copepod nauplii. Larger larvae fed on calanoid copepodites andEvadne nordmanni. Pelagic juveniles fed mainly on fish eggs, with fish larvae also being important food items for some individuals. Most food items taken by juveniles that were associated with drifting seaweed were eggs with attaching filaments (Cololabis saira andHyporhamphus sajori), suggesting that the high density of such food items both attracts and keeps juveniles around drifting seaweed.  相似文献   

4.
Morphological development, including fin and labyrinth organ, body proportions and pigmentation, in laboratory-reared larval and juvenile climbing perch Anabas testudineus was described and behavioral features under rearing condition were observed. Body lengths (BL) of larvae and juveniles were 1.9 ± 0.1 (mean ± SD) mm just after hatching (day-0), 8.7 ± 1.3 mm on day-19, reaching 18.4 ± 2.1 mm on day-35 after hatching. Aggregate fin ray numbers attained full complements in juveniles larger than 8.3 mm BL. Preflexion larvae started feeding on day-2 following formation of the upper and lower jaws, the yolk being completely absorbed by day-7 after hatching. Teeth appeared in flexion larvae larger than 5 mm BL on day-6, with cannibalism starting shortly after and continuing with further growth. Melanophores on the body increased with growth, a large dark spot developing on the lateral midline around caudal margin of the body in the postflexion and juvenile stages. The labyrinth organ differentiated in postflexion larvae larger than 7.2 mm BL on day-16, with air-breathing starting at the same time. Body proportions attained constant in postflexion larvae larger than 7.0 mm BL, and habitat of fish shifted from bottom to mid-layer. With the exception of fin ray numbers, the above morphological developments corresponded to behavioral shifts that occurred in the postflexion stage (ca. 7 mm BL), their subsequent continuity illustrating that the species possessed most juvenile-equivalent functions from ca. 7 mm BL.  相似文献   

5.
Morphological development, including the body proportions, fins, pigmentation and labyrinth organ, in laboratory-hatched larval and juvenile three-spot gourami Trichogaster trichopterus was described. In addition, some wild larval and juvenile specimens were observed for comparison. Body lengths of larvae and juveniles were 2.5 ± 0.1 mm just after hatching (day 0) and 9.2 ± 1.4 mm on day 22, reaching 20.4 ± 5.0 mm on day 40. Aggregate fin ray numbers attained their full complements in juveniles >11.9 mm BL. Preflexion larvae started feeding on day 3 following upper and lower jaw formation, the yolk being completely absorbed by day 11. Subsequently, oblong conical teeth appeared in postflexion larvae >6.4 mm BL (day 13). Melanophores on the body increased with growth, and a large spot started forming at the caudal margin of the body in flexion postlarvae >6.7 mm BL, followed by a second large spot positioned posteriorly on the midline in postflexion larvae >8.6 mm BL. The labyrinth organ differentiated in postflexion larvae >7.9 mm BL (day 19). For eye diameter and the first soft fin ray of pelvic fin length, the proportions in laboratory-reared specimens were smaller than those in wild specimens in 18.5–24.5 mm BL. The pigmentation pattern of laboratory-reared fish did not distinctively differ from that in the wild ones. Comparisons with larval and juvenile morphology of a congener T. pectoralis revealed several distinct differences, particularly in the numbers of myomeres, pigmentations and the proportional length of the first soft fin ray of the pelvic fin.  相似文献   

6.
Morphological development, including that of fins, labyrinth organ, body proportions, and pigmentation, in laboratory-hatched larval and juvenile snakeskin gourami Trichogaster pectoralis is described. Body lengths (BL; mean ± SD) of larvae and juveniles were 2.3 ± 0.1 mm just after hatching (day 0) and 8.2 ± 0.6 mm on day 22, reaching 14.1 ± 2.3 mm on day 48. Aggregate fin ray numbers attained their full complements in juveniles >11.8 mm BL. Preflexion larvae started feeding on day 2 following upper and lower jaw formation, the yolk being completely absorbed by day 12. Subsequently, oblong conical teeth appeared in postflexion larvae >8.2 mm BL (day 16). Melanophores on the body increased with growth, with a large dark spot developing on the lateral midline at the caudal margin of the body in flexion larvae >6.1 mm BL. Subsequently, a broad vertical dark band from the eye to the caudal peduncle developed in postflexion larvae >8.9 mm BL. Proportions of head and pre-anal lengths became constant in postflexion larvae greater than ca. 9–10 mm BL, whereas those of maximum body depth, eye diameter, and snout length failed to stabilize in fish of the size examined in this study. First soft fin ray of the pelvic fin elongated, reaching over 40% BL. The labyrinth organ differentiated in postflexion larvae >7.4 mm BL (day 22). Comparisons of larval and juvenile morphology with another anabantoid species Anabas testudineus were also made, revealing several distinct differences, particularly in the numbers of myomeres and fin rays in the dorsal/anal fins, mouth location and body shape.  相似文献   

7.
Embryonic, larval and juvenile development of the catadromous roughskin sculpin,Trachidermus fasciatus, were described using eggs spawned in an aquarium. The eggs, measuring 1.98–2.21 mm in diameter, were light reddish-yellow and had many oil globules, 0.05–0.18 mm in diameter. Hatching occurred 30 days after spawning at 2.3–11.3°C. The newly-hatched larvae, measuring 6.9–7.3 mm BL, had a single oil globule, 9–10+25–26=34–36 myomeres and 6 or 7 large stellate melanophores dorsally along the gut. The yolk was almost resorbed, number of pectoral-fin rays attained 16–17, and two parietal, one nuchal and four preopercular spines were formed, 5 days after hatching, at 8.2–8.4 mm BL. The oil globule disappeared, and one supracleithral spine was formed, 11 days after hatching, at 8.9–9.5 mm BL. Notochord flexion began 15 days after hatching, at 9.7–10.3 mm BL. A posttemporal spine was formed 20 days after hatching, at 10.7–10.9 mm BL. The first dorsal fin spines (VII–VIII), second dorsal fin and anal fin rays (18–19, 16–18, respectively) appeared 23 days after hatching, at 12.0–13.7 mm BL. The pelvic fin spine and rays (I, 4) were formed and black bands on the head and sides of the body began to develop 27 days after hatching, at 13.8–15.8 mm BL. Newly-hatched larvae swam just below the surface in the aquaria. Preflexion larvae (8.9–9.5 mm BL), in which the oil globule had disappeared, swam in the middle layer, while juveniles (13.8–15.8 mm BL) began swimming on the bottom of the aquaria. Swimming behavior observed in the aquaria suggested that the fish started to change to a demersal existence at the juvenile stage.  相似文献   

8.
Embryonic, larval, and juvenile development of a Myanmarese cyprinid fish, Inlecypris auropurpureus, is described from laboratory-reared specimens. The eggs, measuring 0.9–1.0 mm in diameter, were demersal, almost spherical in shape, transparent and unpigmented, with a pale yellow yolk without oil globules. Hatching occurred 49–56 h after fertilization at 26.2°–27.3°C. The newly hatched larvae, measuring 2.9–3.1 mm in body length (BL) with 17 + 19–20 = 36–37 myomeres, had melanophores on the head and body. A cement organ on the forehead for adhering to objects during the yolk sac and early preflexion larval stages was distinctive. The yolk was completely absorbed at 3.6–4.0 mm BL. Notochord flexion was initiated at 5.1–5.6 mm BL and finished at 7.1 mm BL. Aggregate numbers of all fin rays were completed at 14 mm BL. Squamation was initiated midlaterally on the anterior trunk at 14 mm BL and completed at 27 mm BL. Although the eggs of I. auropurpureus resembled those of the closely related species Chela dadiburjori, Danio rerio, and Devario malabaricus, they differed from those of Danio rerio and Devario malabaricus in having a narrower perivitelline space. The larvae and juveniles of I. auropurpureus were also similar to those of C. dadiburjori, Danio rerio, and Devario malabaricus in general morphology, but they differed from the latter three species in having a series of dark blotches laterally on the body in the juvenile stage. Moreover, I. auropurpureus differed from C. dadiburjori in having more myomeres and a near-single row of melanophores on the body along the dorsal midline from the yolk-sac to early postflexion larval stages, from Danio rerio in having a cement organ on the forehead during the yolk-sac and early preflexion larvae, and a single melanophore on the lower eye margin in the early yolk-sac larvae, and from Devario malabaricus in having a single melanophore on the lower eye margin in the early yolk-sac larvae. The presence of a cement organ on the forehead indicates a close relationship among the genera Inlecypris, Chela, and Devario.  相似文献   

9.
Embryonic, larval, and juvenile development of a small cyprinid species, Tanichthys albonubes, is described from laboratory-reared specimens. The eggs, measuring 1.0–1.2 mm in diameter, were demersal, almost spherical in shape, transparent and unpigmented, with a pale yolk without oil globules. Hatching occurred 45–53 h after fertilization at 25.5°–26.9°C. The newly hatched larvae, measuring 2.2–2.6 mm in body length (BL), had melanophores on the head and body. In particular, a dark vertical streak occurring posterior to the otic capsule and melanophores above the eyes were distinctive. The yolk was completely absorbed at 3.4 mm BL. Notochord flexion was initiated at 5.0 mm BL and finished at 6.0 mm BL. Aggregate numbers of all fin rays were completed at 11 mm BL. Squamation was initiated at 8.4 mm BL and completed at 13 mm BL. Although the eggs of T. albonubes resembled those of other small danionin species, including Aphyocypris chinensis, Chela dadiburjori, Danio rerio, Devario malabaricus, Gobiocypris rarus, Hemigrammocypris rasborella, and Horadandia atukorali, they differed from those of A. chinensis, C. dadiburjori, G. rarus, and Horadandia atukorali in having a wider perivitelline space. The larvae and juveniles of T. albonubes were similar to those of the aforementioned seven species plus Danio albolineatus, Danio kerri, and Devario sp. (cf. D. aequipinnatus) in general morphology. However, the early life stage morphology of T. albonubes differed from them in having a dark vertical streak posterior to the otic capsule and melanophores above the eyes in the yolk sac larval stage, and a dark lateral streak with an unpigmented area just above the former on the body, a dark blotch on the caudal fin, and reddish dorsal, anal, and caudal fins during the postflexion larval and juvenile stages.  相似文献   

10.
Embryonic and larval development of an Indian cyprinid fish, Barilius canarensis, is described from laboratory-reared specimens. The eggs, measuring 2.1–2.4 mm in diameter, were demersal, almost spherical in shape, transparent and unpigmented, with a pale yellow yolk without oil globules. Hatching occurred 39–45 h after fertilization at 26.8°–27.4°C. The newly hatched larvae, measuring 4.8–5.1 mm in body length (BL) with 22 + 17 = 39 myomeres, were characterized by melanophores already deposited on the eyes. The eggs of B. canarensis resembled those of the related danionin species Candidia barbatus, Opsariichthys uncirostris uncirostris, Zacco platypus, Z. sieboldii, and Z. temminckii. Although the larvae of B. canarensis were also similar to those of the foregoing species in general morphology, they differed in having a straight notochord tip and pigmentation on the eyes at hatching and the almost entire absence of melanophores on the ventral body surface from the yolk sac to postflexion larval stages. Conversely, melanophores occurred on the anterior abdominal and pericardial cavities from the preflexion to postflexion larval stages.  相似文献   

11.
 Embryonic, larval, and juvenile development of a Taiwanese cyprinid fish, Candidia barbatus, is described from laboratory-reared specimens. The eggs, measuring 1.8–2.1 mm in diameter, were demersal, almost spherical in shape, transparent and unpigmented, with a pale yellow yolk and no oil globule. Hatching occurred 56–69 h after fertilization, the newly hatched larvae measuring 4.9–5.3 mm in body length (BL) with 25–26 + 13–14 = 39–40 myomeres. The yolk was completely absorbed at 7.6 mm BL. Notochord flexion was initiated at 6.8 mm BL and finished at 7.6 mm BL. Aggregate numbers of all fin rays were completed at 12 mm BL. Barbels on the upper jaw appeared near the corner of the mouth at 17 mm BL. Eggs of the species closely resembled those of its related cyprinid genera, Opsariichthys and Zacco. Larvae and juveniles of C. barbatus were similar to those of O. uncirostris subspp., Z. platypus, and Z. pachycephalus, but differed from the latter in the process of disappearance of the adipose finfold (postflexion larval stage), barbels on upper jaw (juvenile stage), and pigmentation on the lateral body surface (postflexion larval and juvenile stages). Although C. barbatus also differed from the Z. temminckii species' group [Z. temminckii and Zacco sp. (sensu Hosoya, 2002)] in having barbels, larvae and juveniles of the former showed more similarity to the latter species group than to O. uncirostris subspp., Z. platypus, and Z. pachycephalus, from the aspect of head and body pigmentation.  相似文献   

12.
The embryonic, larval and juvenile development of blue whiting,Sillago parvisquamis Gill, are described from a series of laboratory-reared specimens. Mean egg diameter and mean total length (TL) of newly-hatched larvae were 0.71 mm and 1.58 mm, respectively. The eggs were non-adhesive, buoyant and spherical with an oil globule (mean diameter 0.18 mm). Hatching occurred about 20 hours after fertilization at a temperature of 24.0–25.0°C, newly-hatched larvae having 38–40 myomeres. The yolk and oil globule were completely absorbed 3 days after hatching at 2.8–3.2 (mean 3.0) mm TL. Notochord flexion was completed by 7.2–8.2 (7.7) mm TL, and pectoral and caudal fin rays fully developed by approximately 10 mm and 8.5 mm TL, respectively. Completion of fin development occurred in the following sequence: caudal, pectoral, anal and second dorsal, first dorsal and pelvic, the last-mentioned by approximately 11 mm TL. The larvae ofS. parvisquamis andS. japonica, which closely resemble each other in general morphology and pigmentation, could be distinguished as follows. Newly-hatchedS. parvisquamis larvae had more myomeres thanS. japonica (38–40 vs. 32–34) and more melanophores on the dorsal surface of the body (19–28 vs. about 40).Sillago japonica had a vertical band of melanophores on the caudal peduncle, which was lacking in postflexionS. parvisquamis larvae. In addition, juveniles ofS. parvisquamis (larger than 23 mm TL) had melanophores on the body extending anteriorly to below the lateral line to form a midlateral band, whereas no obvious band occurred on similarly-sizedS. japonica juveniles.  相似文献   

13.
The morphological development, including the fins, body proportions and pigmentation, of laboratory-reared larval and juvenile Pangasianodon hypophthalmus was described and their behavioral features were observed under rearing conditions. Body lengths (BL) of larvae and juveniles were 3.0 ± 0.2 (mean ± SD) mm just after hatching, and 12.9 ± 1.1 mm on day 13, reaching 23.4 ± 1.8 mm on day 25 after hatching. Aggregate fin ray numbers (for caudal fin, principal soft ray number) attained their full complements in specimens larger than 12.8 mm BL. Notochord flexion began in yolksac larvae on day 0 (10.5 h after hatching), with teeth buds and barbels appearing with jaw formation in yolksac flexion larvae on day 1. Melanophores on the body increased with growth, with a broad vertical band forming on the lateral line and an oblique band extending from above the pectoral fin base towards the forepart of the anal fin during the postflexion larval and juvenile stages. Body proportions became relatively constant in juveniles, except for maxillary barbel length (MBL), which continued to decrease. Yolksac flexion larvae started feeding on day 2 with the onset of intense cannibalism. Yolks were completely absorbed by day 3, and cannibalism ended by day 6. Subsequently, fish displayed a schooling behavior with growth, preferring relatively dark areas during the juvenile stage.  相似文献   

14.
Morphological development of barracudas (Sphyraena guachancho andS. tome) is described, based on larval and juvenile specimens collected in the southeast Brazilian Bight. Preflexion larvae of the two species are similar, butS. tome larvae can be distinguished from those ofS. guachancho by having small melanophores on the midbrain and a row of melanophores along the ventral midline of the lower jaw and isthmus. Flexion and postflexion larvae ofS. tome are more slender than those ofS. guachancho. Morphology and pigment patterns ofS. tome are similar to those ofS. borealis from the north Atlantic. whereasS. guachancho larvae are similar toS. barracuda in having a fusiform body, advanced position of the pelvic fins and a heavily pigmented tail region, but differ in having a fleshy tip on the lower jaw in postflexion and juvenile stages.  相似文献   

15.
Eggs of the silver pomfret,Pampus argenteus, were collected and artificially fertilized by stripping fully-ripe male and female broodstock caught by gillnets in Kuwait waters during June 1997. Larvae hatched from fertilized eggs were reared until 90 days after hatching (DAH) in water temperatures of 27–30°C. Newly-hatched larvae grew from an average of 2.4 mm in body length (BL) to 3.7, 4.4, 7.2 and 8.4 mm at 8, 12, 24 and 30 DAH, respectively. Myomere and vertebral numbers ranged from 34 to 36. Transformation from the larval to juvenile form was completed at 22.2 mm BL (40 DAH). Dorsal and anal fin spines first appeared when juveniles reached 38.8 mm BL (50 DAH). Body depth increased with increase in body length; a rapid increase in body depth occurred in larvae 7.1–8.0 mm, reaching 57% of BL, and further increased to 69% of BL in juveniles 38.8 to 47.9 mm. Pigmentation during development is described and illustrated.  相似文献   

16.
The early life history of Ayu (Plecoglossus altivelis) was investigated in the Kalong and Tien Yen River systems, northern Vietnam, which is probably the most southern distribution locality for this species, during the period of November 2010 to February 2011. A total of 248 larvae were captured in the Kalong, and none were collected in the Tien Yen. There was little difference in development between the Kalong larvae and those of P. a. altivelis and P. a. ryukyuensis. Temperatures and salinities when the larvae were collected ranged from ca. 12 to 21°C and from ca. 3.5 to 30 psu. The preflexion to flexion larvae (primarily preflexion with yolk, 5.2–12.9 mm BL) occurred in the central current from December to February, with a peak abundance in early January. The flexion to postflexion (primarily postflexion, 14.1–23.8 mm BL) larvae occurred in the bank waters from early January to late February. The larval occurrence in the Kalong was 1–2 months later than for P. a. altivelis in Japan and P. a. ryukyuensis in the Ryukyu Islands, probably because of the delay until a reasonable photoperiod for the start of spawning in the lower latitudinal region. The larvae were never collected from the sea, where the temperatures were lower than in the river and estuary in January and February, unlike in Japan.  相似文献   

17.
The morphology of the early stage of Eumegistus was described from three specimens [E. brevorti: 23.0 mm in standard length (SL) juvenile; E. illustris: 5.8 mm SL postflexion larva, and 40.0 mm SL juvenile] recently rediscovered in museum collections. Larval and juvenile pigmentation patterns were reported for the first time for this genus. The 5.8 mm SL postflexion larva of E. illustris had pigmentation on the head and anterior half of the body, through to the middle of the dorsal fin base. In larvae and juveniles of both species, the outer side of the pelvic fin was pigmented. The two juveniles possessed several spines on the lachrymal and protruding rays in the middle of the caudal fin. Although it is known previously that the notochord flexion occurs at 5.0–6.0 mm SL in E. brevorti, the reexamined 5.0 mm SL specimen had the notochord completely flexed. Furthermore, we could not confirm whether the previously studied 4.0 mm SL specimen was E. brevorti because it was badly damaged.  相似文献   

18.
Larvae and juveniles of six species of Luciogobius were collected at Aritsu Beach on Okinawa Island using a small seine. Postflexion larvae were dominant during sampling and were collected when they approached the shoreline adjacent to or at the entrances to their adult habitats prior to settlement. Standard lengths of postflexion larvae ranged from 5.4 to 14.4 mm and varied depending on the species. The larvae occurred mainly from January to April, but some larvae were caught in October and November. Their pelagic larval durations were estimated to range from 17 to 36 days and varied depending on the species. Morphologies of field-caught larvae and juveniles and laboratory-reared juveniles were described. Six species were clearly distinguished based on fin ray and vertebral counts, proportions, body size, and pigment patterns. Although their taxonomic statuses could not be determined, it is thought that they have independent relatives in other regions.  相似文献   

19.
The growth and morphological development of larval and juvenileEpinephelus bruneus were examined in a hatchery-reared series. Average body length (BL) of newly-hatched larvae was 1.99 mm, the larvae growing to an average of 3.96 mm by day 10, 6.97 mm by day 20, 12.8 mm by day 30, 22.1 mm by day 40 and 24.7 mm by day 45 after hatching. Newly-hatched larvae had many mucous cells in the entire body epidermis. By about 4 mm BL, the larvae had developed pigment patterns peculiar to epinepheline fishes, including melanophores on the dorsal part of the gut, on the tips of the second dorsal and pelvic fin spines, and in a cluster on the ventral surface of the tail. Spinelets on the second dorsal and pelvic fin spines, the preopercular angle spine and the supraocular spine, had started to develop by about 6 mm BL. The notochord tip was in the process of flexion in larvae of 6–8 mm BL, by which time major spines, pigments and jaw teeth had started to appear. Fin ray counts had attained the adult complement at 10 mm BL. After larvae reached 17 mm BL, elements of juvenile coloration in the form of more or less densely-pigmented patches started to appear on the body. Squamation started at 20 mm BL. Major head spines had disappeared or became relatively smaller and lost their serrations by 20–25 mm BL.  相似文献   

20.
 Embryonic, larval, and juvenile development of two cyprinid species belonging to the Zacco temminckii species' group, Z. temminckii (Temminck and Schlegel) and Zacco sp. (type A), are described and compared with each other from laboratory-reared and wild specimens. The eggs of both species were closely similar except in diameter [1.92–2.20 mm in Z. temminckii vs. 1.60–1.75 mm in Z. sp. (type A)], being demersal, almost spherical in shape, transparent and unpigmented, with a pale yellow yolk, and no oil globule. Hatching occurred 40–53 h after fertilization in Z. temminckii and after 47–60 h in Z. sp. (type A). The newly hatched larvae of both species [4.9–5.3 mm in body length (BL) in Z. temminckii and 3.5–4.8 mm BL in Z. sp. (type A)] also resembled each other, having a large transparent pear-shaped yolk and lacking body pigmentation. Myomere counts of Z. temminckii and Z. sp. (type A) larvae and juveniles were 24–27 + 14–17 = 41–42 and 23–27 + 14–17 = 40–41, respectively. The yolk was completely absorbed at 8.3 mm BL in Z. temminckii and at 6.6 mm BL in Z. sp. (type A). Notochord flexion was initiated and completed at 7.8 mm BL and 8.2 mm BL in Z. temminckii and at 6.3 mm BL and 6.6 mm BL in Z. sp. (type A), respectively. Aggregate numbers of all fin rays were completed at 17 mm BL in Z. temminckii and 13 mm BL in Z. sp. (type A). Although the morphology of larvae and juveniles of both species was very similar, differences in body length of each developmental stage, the duration and process of disappearance of the adipose finfold, the anal fin ray counts, and pigmentation on the lateral body surface were clearly recognized. Received: August 10, 2001 / Revised: March 14, 2002 / Accepted: March 27, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号