共查询到20条相似文献,搜索用时 0 毫秒
1.
Jiu-Chang Zhong Jia-ying Ye Hai-yan Jin Xi Yu Hui-min Yu Ding-liang Zhu Ping-jin Gao Dong-yang Huang Manfred Shuster Hans Loibner Jun-min Guo Xi-yong Yu Bing-xiu Xiao Zhao-hui Gong Josef M. Penninger Gavin Y. Oudit 《Regulatory peptides》2011,166(1-3):90-97
Profilin-1 has recently been linked to vascular hypertrophy and remodeling. Here, we assessed the hypothesis that angiotensin (Ang) II type I receptor antagonist telmisartan improves vascular hypertrophy by modulation of expression of profilin-1 and angiotensin-converting enzyme 2 (ACE2). Ten-week-old male spontaneously hypertensive rats (SHR) were received oral administration of telmisartan (5 or 10 mg/kg; daily) or saline for 10 weeks. Compared with Wistar–Kyoto (WKY) rats, there were marked increases in systolic blood pressure and profilin-1 expression and reduced ACE2 and peroxisome proliferator activated receptor-γ (PPARγ) levels in aorta of SHR, associated with elevated extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) phosphorylation signaling and aortic hypertrophy characterized with increased media thickness, which were strikingly reversed by telmisartan. In cultured human umbilical artery smooth muscle cells (HUASMCs), Ang II induced a dose-dependent increase in profilin-1 expression, along with decreased ACE2 protein expression and elevated ERK1/2 and JNK phosphorylation. In addition, blockade of ERK1/2 or JNK by either specific inhibitor was able to abolish Ang II-induced ACE2 downregulation and profilin-1 upregulation in HUASMCs. Importantly, treatment with telmisartan (1 or 10 μM) or recombinant human ACE2 (2 mg/ml) largely ameliorated Ang II-induced profilin-1 expression and ERK1/2 and JNK phosphorylation and augmented PPARγ ?expression in the cultured HUASMCs. In conclusion, telmisartan treatment attenuates vascular hypertrophy in SHR by the modulation of ACE2 and profilin-1 expression with a marked reversal of ERK1/2 and JNK phosphorylation signaling pathways. 相似文献
2.
Mazza F Goodman A Lombardo G Vanella A Abraham NG 《Experimental biology and medicine (Maywood, N.J.)》2003,228(5):576-583
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is inducible by inflammatory conditions, which cause oxidative stress in endothelial cells. Overexpression of human HO-1 in endothelial cells may have the potential to provide protection against a variety of agents that cause oxidative stress. We investigated the physiological significance of human HO-1 overexpression using a retroviral vector on attenuation of angiotensin II (Ang II)-mediated oxidative stress. Comet and glutathione (GSH) levels were used as indicators of the levels of oxidative stress. Comet assay was performed to evaluate damage on DNA, whereas GSH levels were measured to determine the unbalance of redox potential. Pretreatments with inducers, such as heme 10 microM, SnCl(2) 10 microM, and inhibitors, such as tin-mesoporphyrin 10 microM was followed by treatment with Ang II 200 ng/ml. Pretreatment with heme or SnCl(2) provoked significant reductions (P < 0.01) of tail moment in the comet assay. Opposite effects were evident by pretreatment for 16 hr with tin-mesoporphyrin. A decrease in tail moment levels was found in human endothelial cells transduced with the human HO-1 gene. The addition of Ang II (200 ng/ml) to human dermal microvessel endothelial cell-1 for 16 hr resulted in a significant (P < 0.05) reduction of GSH contents control endothelial cells but not in endothelial cells transduced with HO-1 gene. The results presented indicated that stimulation or overexpression of HO-1 attenuated DNA damages caused by exposures of Ang II. 相似文献
3.
4.
目的:通过观察血管紧张素转化酶(ACE)和血管紧张素转化酶2(ACE2)在Wistar-京都种大鼠(WKY)和自发性高血压(SHR)大鼠心脏组织中表达的差异,探讨ACE与ACE2在自发性高血压大鼠高血压形成中的作用。方法:自由饲喂14周龄WKY和SHR雄性大鼠一周后,用BSN-II多通道无创测压系统测定大鼠收缩压(SBP)、舒张压(DBP)、心率(HR)并称重;放免法测定血浆中血管血管紧张素Ⅱ(AngII)含量;Real-time PCR测定心脏组织中ACE,ATI受体(ATIR),ACE2和Mas受体(MasR)mRNA的表达水平;Western blot法检测心脏组织中ACE2的蛋白表达。结果:SHR大鼠SBP和DBP均显著高于WKY大鼠(P〈0.01);两组大鼠心率和体重无显著差异(P〉0.05);SHR大鼠血浆中AngII含量显著升高(P〈0.05);与WKY大鼠相比,SHR大鼠心脏中ACE mRNA表达均显著升高(P〈0.05),ACE2的mRNA和蛋白表达水平均显著下降(P〈0.05);心脏组织中AT1R和MasR的mRNA表达没有显著性变化(P〉0.05)。结论:ACE与ACE2表达失调是SHR大鼠高血压形成的主要原因之一,其机理可能与局部组织RAS系统ACE-AngII-AT1R通路过度活跃,ACE2-Ang(1-7)-MasR通路相对不足有关。 相似文献
5.
6.
ACE inhibition lowers angiotensin II-induced chemokine expression by reduction of NF-kappaB activity and AT1 receptor expression 总被引:4,自引:0,他引:4
Schmeisser A Soehnlein O Illmer T Lorenz HM Eskafi S Roerick O Gabler C Strasser R Daniel WG Garlichs CD 《Biochemical and biophysical research communications》2004,325(2):532-540
OBJECTIVE: Angiotensin converting enzyme (ACE) inhibitors significantly improve survival in patients with atherosclerosis. Although ACE inhibitors reduce local angiotensin II (AngII) formation, serine proteases form AngII to an enormous amount independently from ACE. Therefore, our study concentrates on the effect of the ACE-inhibitor ramiprilat on chemokine release, AngII receptor (ATR) expression, and NF-kappaB activity in monocytes stimulated with AngII. METHODS AND RESULTS: AngII-induced upregulation of IL-8 and MCP-1 protein and RNA in monocytes was inhibited by the AT1R-blocker losartan, but not by the AT2R-blocker PD 123.319. Ramiprilat dose-dependently suppressed AngII-induced upregulation of IL-8 and MCP-1. The suppressive effect of ramiprilat on AngII-induced chemokine production and release was in part caused by downregulation of NF-kappaB, but more by a selective and highly significant reduced expression of AT1 receptors as shown in monocytes and endothelial cells. CONCLUSION: In our study we demonstrated for the first time that ramiprilat reduced expression of AT1R in monocytes and endothelial cells. In addition, ramiprilat downregulated NF-kappaB activity and thereby reduced the AngII-induced release of IL-8 and MCP-1 in monocytes. This antiinflammatory effect, at least in part, may contribute to the clinical benefit of the ACE inhibitor in the treatment of coronary artery disease. 相似文献
7.
8.
9.
Guillemot L Levy A Zhao ZJ Bereziat G Rothhut B 《The Journal of biological chemistry》2000,275(34):26349-26358
Angiotensin II (Ang II) binds to specific G protein-coupled receptors and is mitogenic in Chinese hamster ovary (CHO) cells stably expressing a rat vascular angiotensin II type 1A receptor (CHO-AT(1A)). Cyclin D1 protein expression is regulated by mitogens, and its assembly with the cyclin-dependent kinases induces phosphorylation of the retinoblastoma protein pRb, a critical step in G(1) to S phase cell cycle progression contributing to the proliferative responses. In the present study, we found that in CHO-AT(1A) cells, Ang II induced a rapid and reversible tyrosine phosphorylation of various intracellular proteins including the protein-tyrosine phosphatase SHP-2. Ang II also induced cyclin D1 protein expression in a phosphatidylinositol 3-kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)-dependent manner. Using a pharmacological and a co-transfection approach, we found that p21(ras), Raf-1, phosphatidylinositol 3-kinase and also the catalytic activity of SHP-2 and its Src homology 2 domains are required for cyclin D1 promoter/reporter gene activation by Ang II through the regulation of MAPK/ERK activity. Our findings suggest for the first time that SHP-2 could play an important role in the regulation of a gene involved in the control of cell cycle progression resulting from stimulation of a G protein-coupled receptor independently of epidermal growth factor receptor transactivation. 相似文献
10.
Effect of angiotensin peptides on PAI-1 expression and production in human adipocytes. 总被引:9,自引:0,他引:9
Angiotensin (Ang) II is the active component of the renin-angiotensin-system (RAS), but its degradation products have also been shown to exhibit biological activity. This system, which mainly controls blood pressure and electrolyte homeostasis, was recently found to be completely expressed in human adipose tissue. The major determinant in the fibrinolytic system is the plasminogen activator inhibitor-1 (PAI-1). Both PAI-1 and components of the RAS are over-expressed in the obese state. We have recently shown that Ang II is able to induce PAI-1 expression and release via the AT1-receptor in human fat cells in primary culture, and have provided the first evidence that two metabolites, Ang III and Ang IV, may have a similar stimulatory effect on PAI-1 release. We have now performed additional experiments to further characterize the role of the angiotensin peptides in the production of PAI-1. Ang III and Ang IV showed a time- and dose-dependent stimulation of PAI-1 protein release. Concomitantly, mRNA-levels were markedly elevated. Using specific receptor blockers, all angiotensin peptides seem to induce PAI-1 expression via the angiotensin receptor subtype 1. However, components of the renin-angiotensin-system seem to play an important role in the control of fibrinolysis in adipose tissue. We conclude that PAI-1 production by adipose tissue may contribute to the elevated thromboembolic risk in obesity. 相似文献
11.
Mohsenin A Mi T Xia Y Kellems RE Chen JF Blackburn MR 《American journal of physiology. Lung cellular and molecular physiology》2007,293(3):L753-L761
Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation. 相似文献
12.
Wu CA Puddington L Whiteley HE Yiamouyiannis CA Schramm CM Mohammadu F Thrall RS 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(5):2798-2807
Concomitant infection of murine CMV (MCMV), an opportunistic respiratory pathogen, altered Th1/Th2 cytokine expression, decreased bronchoalveolar lavage (BAL) fluid eosinophilia, and increased mucus production in a murine model of OVA-induced allergic airway disease. Although no change in the total number of leukocytes infiltrating the lung was observed between challenged and MCMV/challenged mice, the cellular profile differed dramatically. After 10 days of OVA-aerosol challenge, eosinophils comprised 64% of the total leukocyte population in BAL fluid from challenged mice compared with 11% in MCMV/challenged mice. Lymphocytes increased from 11% in challenged mice to 30% in MCMV/challenged mice, and this increase corresponded with an increase in the ratio of CD8(+) to CD4(+)TCRalphabeta lymphocytes. The decline in BAL fluid eosinophilia was associated with a change in local Th1/Th2 cytokine profiles. Enhanced levels of IL-4, IL-5, IL-10, and IL-13 were detected in lung tissue from challenged mice by RNase protection assays. In contrast, MCMV/challenged mice transiently expressed elevated levels of IFN-gamma and IL-10 mRNAs, as well as decreased levels of IL-4, IL-5, and IL-13 mRNAs. Elevated levels of IFN-gamma and reduced levels of IL-5 were also demonstrated in BAL fluid from MCMV/challenged mice. Histological evaluation of lung sections revealed extensive mucus plugging and epithelial cell hypertrophy/hyperplasia only in MCMV/challenged mice. Interestingly, the development of airway hyperresponsiveness was observed in challenged mice, not MCMV/challenged mice. Thus, MCMV infection can modulate allergic airway inflammation, and these findings suggest that enhanced mucus production may occur independently of BAL fluid eosinophilia. 相似文献
13.
Pastore S Mascia F Mariotti F Dattilo C Mariani V Girolomoni G 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(8):5047-5056
Resident cell populations of the skin contribute to the inflammatory response by producing an array of chemokines, which attract leukocytes from the circulation. TNF-alpha is a major inducer of proinflammatory mediators in keratinocytes. We have recently observed that epidermal growth factor receptor (EGFR) signaling affects TNF-alpha-driven chemokine expression in epidermal keratinocytes, and its functional impairment increases the levels of crucial chemoattractants such as CCL2/MCP-1, CCL5/RANTES, and CXCL10/IFN-gamma-inducible protein-10. In this study, we report evidence that EGFR-dependent ERK1/2 activity is implicated in this mechanism. Abrogation of ERK1/2 activity with specific inhibitors increased chemokine expression in keratinocytes by enhancing mRNA stabilization. In mouse models, inflammatory response to irritants and T cell-mediated contact hypersensitivity were both aggravated when elicited in a skin area previously treated with an EGFR or a MAPK kinase 1/2 inhibitor. In contrast, impairment of p38alpha beta MAPK phosphorylation markedly attenuated these responses. Our data indicate that EGFR-dependent ERK1/2 activity in keratinocytes takes part to a homeostatic mechanism regulating inflammatory responses, and emphasize the distinct role of MAPKs as potential targets for manipulating inflammation in the skin. 相似文献
14.
15.
Levy A Yagil Y Bursztyn M Barkalifa R Scharf S Yagil C 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,295(6):R1953-R1961
In the current study, we investigated the expression and activity of ACE2 during pregnancy in normotensive and hypertensive rats, focusing on the relative contribution of the uterus and the placentas, the kidney serving as a reference. We used the Sabra rat model of salt-sensitive hypertension. We confirmed a systemic vasodilatory state during the third trimester of pregnancy, as evidenced by a reduction in blood pressure, both in normotensive and hypertensive rats. At the time that blood pressure was reduced, ACE2 was expressed abundantly in the reproductive organs. The relative levels of ACE2 mRNA in the pregnant animal were placenta > kidneys > or = uterus and of ACE2 activity kidney > placenta > uterus. In the uterus and the placenta, ACE2 expression was unaffected by strain, salt-loading, or the level of blood pressure. ACE2 activity in the uterus of the nonpregnant rat was not affected by any of these variables either, but during pregnancy increased in salt-loaded animals. When estimating the total contribution of the uterus to ACE2 mRNA and activity during pregnancy, we found that the amount of ACE2 mRNA increased in both strains irrespective of diet, but that ACE2 activity increased only in salt-loaded animals. We further estimated the relative total contribution of the uterus, placentas, and kidneys to ACE2 expression and activity during pregnancy by adjusting for mass and number of organs and found that the placentas were the major contributors, followed by the kidney and the uterus. We conclude that during pregnancy, the placentas, in particular, but also the uterus, constitute important sources of ACE2, in addition to its normal production in the kidney, leading to an estimated twofold increase in total ACE2 activity. These data are consistent the hypothesis that transient ACE2 overexpression and increased activity during pregnancy may be important in modulating systemic, as well as local hemodynamics in the uteroplacental unit. 相似文献
16.
Swainsonine, an inhibitor of mannosidase II, enhanced Con A induced lymphocyte IL-2 receptor expression, IL-2 production, and proliferation. Mitogen activated lymphocytes treated with swainsonine and subsequently restimulated with IL-2 showed a three-fold increase in proliferation. Castanospermine, 1-deoxynojirimycin, bromoconduritol and 1-deoxymannojirimycin, inhibitors of glucosidase 1, glucosidases 1 and II, glucosidase II, and mannosidase 1, respectively, did not exhibit any immunoenhancing activity. These results indicate that specific inhibition of mannosidase II during glycoprotein processing can enhance IL-2 mediated lymphocyte mitogenesis. 相似文献
17.
Masatoshi Murayama Hirohito Hirata Makoto Shiraki Juan L. Iovanna Takayoshi Yamaza Toshio Kukita Toshihisa Komori Takeshi Moriishi Masaya Ueno Tadatsugu Morimoto Masaaki Mawatari Akiko Kukita 《Journal of cellular physiology》2023,238(3):566-581
Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-β signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6−19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss. 相似文献
18.
19.
Melanie Generali Debora Kehl Debora Wanner Michal J. Okoniewski Simon P. Hoerstrup Paolo Cinelli 《Journal of cellular and molecular medicine》2022,26(1):228
The outbreak of COVID‐19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID‐19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS‐CoV‐2 entry has been detected in all MSC samples. These results are of particular importance for future MSC‐based cell therapies to treat severe cases after COVID‐19 infection. 相似文献
20.
Samuel P Ali Q Sabuhi R Wu Y Hussain T 《American journal of physiology. Renal physiology》2012,303(3):F412-F419
High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT(1)R) vs. AT(2)-ACE2-angiotensinogen (Ang) (1-7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT(1A/B)R, ACE, AT(2)R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT(1B)R increased, renin decreased, and ACE2, AT(2)R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT(2)R, and MasR, and no changes in renin and AT(1)R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT(2)R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT(1)R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension. 相似文献