首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Wang L  Xu T  Lei WW  Liu DM  Li YJ  Xuan RJ  Ma JJ 《PloS one》2011,6(11):e27853
Cadmium (Cd), one of the most toxic environmental and industrial pollutants, is known to exert gonadotoxic and spermiotoxic effects. In the present study, we examined the toxic effect of Cd on the testis of freshwater crab, Sinopotamon henanense. Crabs were exposed to different Cd concentrations (from 0 to 116.00 mg·L(-1)) for 7 d. Oxidative stress and apoptotic changes in the testes were detected. The activities of SOD, GPx and CAT initially increased and subsequently decreased with increasing Cd concentrations, which was accompanied with the increase in malondialdehyde (MDA) and H(2)O(2) content in a concentration-dependent manner. Typical morphological characteristic and physiological changes of apoptosis were observed using a variety of methods (HE staining, AO/EB double fluorescent staining, Transmission Electron Microscope observation and DNA fragmentation analysis), and the activities of caspase-3 and caspase-9 were increased in a concentration-dependent manner after Cd exposure. These results led to the conclusion that Cd could induced oxidative damage as well as apoptosis in the testis, and the apoptotic processes may be mediated via mitochondria-dependent apoptosis pathway by regulating the activities of caspase-3 and caspase-9.  相似文献   

2.
Cell death resulting from cadmium (Cd) intoxication has been confirmed to induce both necrosis and apoptosis. The ratio between both types of cell death is dose- and cell-type-dependent. This study used the human keratinocytes HaCaT expressing a mutated p53 and the rat glial cells C6 expressing a wild p53 as models to characterize Cd-induced apoptosis, using sub-lethal and lethal doses. At these concentrations, features of apoptosis were observed 24 h after C6 cell treatment: apoptotic DNA fragmentation and caspase-9 activation, whereas Cd did not induce caspase-3. In HaCaT, Cd did not induce apoptotic DNA fragmentation or caspase-9 and -3 activation. The results also showed that the inhibition of p53 led to a resistance of the C6 cells to 20 µm Cd, decreased the apoptosis and increased the metallothioneins in these cells. p53 restoration increased the sensitivity of HaCaT cells to Cd but did not affect the MT expression. The results suggest that Cd induced apoptosis in C6 cells but a non-apoptotic cellular death in HaCaT cells.  相似文献   

3.
Cell death resulting from cadmium (Cd) intoxication has been confirmed to induce both necrosis and apoptosis. The ratio between both types of cell death is dose- and cell-type-dependent. This study used the human keratinocytes HaCaT expressing a mutated p53 and the rat glial cells C6 expressing a wild p53 as models to characterize Cd-induced apoptosis, using sub-lethal and lethal doses. At these concentrations, features of apoptosis were observed 24 h after C6 cell treatment: apoptotic DNA fragmentation and caspase-9 activation, whereas Cd did not induce caspase-3. In HaCaT, Cd did not induce apoptotic DNA fragmentation or caspase-9 and -3 activation. The results also showed that the inhibition of p53 led to a resistance of the C6 cells to 20 µm Cd, decreased the apoptosis and increased the metallothioneins in these cells. p53 restoration increased the sensitivity of HaCaT cells to Cd but did not affect the MT expression. The results suggest that Cd induced apoptosis in C6 cells but a non-apoptotic cellular death in HaCaT cells.  相似文献   

4.
Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd) is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM) and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway.  相似文献   

5.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

6.
We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.  相似文献   

7.
Hydrogen peroxide (H2O2), a major reactive oxygen species, has been shown to be a critical mediator of apoptosis induced by several toxic metals such as cadmium. In this study, we used the freshwater crab Sinopotamon henanense to study whether H2O2 can cause apoptosis in gill cells. The crabs were incubated in H2O2 and the DNA fragmentation, ultrastructural changes and caspase-3/8/9 activities were measured. The results showed that in freshwater crab, H2O2 was found to induce apoptosis, as confirmed by DNA fragmentation analysis and morphological observation of transmission electron microscopy. This apoptosis occurs in a concentration-dependent pattern. During the apoptotic process, caspase-3, caspase-8 and caspase-9 were activated by H2O2. In addition, multiple physiological and pathological changes of gill cells were discovered after 24 h exposure to 5 mM H2O2, including aggregation and condensation of nuclear chromatin, appearance of extremely irregular nuclei with finger-like buds, disappearance of the organelles around the nuclei, swollen and dissolved cristae of mitochondria. We propose that H2O2-induced stress leads to mitochondria lesions oxidative injury and triggers apoptotic response through the caspase pathway in freshwater crab.  相似文献   

8.
We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.  相似文献   

9.
Oxidative stress may cause apoptosis of cardiomyocytes in ischemia-reperfused myocardium, and heat shock pretreatment is thought to be protective against ischemic injury when cardiac myocytes are subjected to ischemia or simulated ischemia. However, the detailed mechanisms responsible for the protective effect of heat shock pretreatment are currently unclear. The aim of this study was to determine whether heat shock pretreatment exerts a protective effect against hydrogen peroxide(H2O2)-induced apoptotic cell death in neonatal rat cardiomyocytes and C2C12 myogenic cells and whether such protection is associated with decreased release of second mitochondria-derived activator of caspase-direct IAP binding protein with low pl (where IAP is inhibitor of apoptosis protein) (Smac/DIABLO) from mitochondria and the activation of caspase-9 and caspase-3. After heat shock pretreatment (42 +/- 0.3 degrees C for 1 hour, recovery for 12 hours), cardiomyocytes and C2C12 myogenic cells were exposed to H2O2 (0.5 mmol/L) for 6, 12, 24, and 36 hours. Apoptosis was evaluated by Hoechst 33258 staining and DNA laddering. Caspase-9 and caspase-3 activities were assayed by caspase colorimetric assay kit and Western analysis. Inducible heat shock proteins (Hsp) were detected using Western analysis. The release of Smac/DIABLO from mitochondria to cytoplasm was observed by Western blot and indirect immunofluorescence analysis. (1) H2O2 (0.5 mmol/L) exposure induced apoptosis in neonatal rat cardiomyocytes and C2C12 myogenic cells, with a marked release of Smac/DIABLO from mitochondria into cytoplasm and activation of caspase-9 and caspase-3, (2) heat shock pretreatment induced expression of Hsp70, Hsp90, and alphaB-crystallin and inhibited H2O2-mediated Smac/DIABLO release from mitochondria, the activation of caspase-9, caspase-3, and subsequent apoptosis. H2O2 can induce the release of Smac/DIABLO from mitochondria and apoptosis in cardiomyocytes and C2C12 myogenic cells. Heat shock pretreatment protects the cells against H2O2-induced apoptosis, and its mechanism appears to involve the inhibition of Smac release from mitochondria.  相似文献   

10.
The surrounding medium of periodontal pathogen Porphyromonas gingivalis (P. gingivalis) increased cardiomyocyte hypertrophy and apoptosis whereas Actinobaeillus actinomycetemcomitans and Prevotella intermedia had no effects. The purpose of this study is to clarify the role of p38 pathway in P. gingivalis conditioned medium-induced H9c2 myocardial cell hypertrophy and apoptosis. DNA fragmentation, cellular morphology, nuclear condensation, p38 protein products, and mitochondrial-dependent apoptotic related proteins in cultured H9c2 myocardial cell were measured by agarose gel electrophoresis, immunofluorescence, DAPI, and western blotting following P. gingivalis conditioned medium and/or pre-administration of SB203580 (p38 inhibitor). The p38 protein products and associated activities in H9c2 cells were both upregulated by P. gingivalis conditioned medium. P. gingivalis conditioned medium increased cellular sizes, DNA fragmentation, nuclear condensation, mitochondrial Bcl2-associated death promoter (Bad), cytosolic cytochrome c (cyt c), and the activated form of caspase-9 proteins in H9c2 cells. The increased cellular sizes, DNA fragmentation, nuclear condensation, Bad, cyt c, and caspase-9 activities of H9c2 cells treated with P. gingivalis conditioned medium were all significantly reduced after pre-administration of SB203580. Our findings suggest that the activity of p38 signal pathway may be initiated by P. gingivalis conditioned medium and further activate mitochondrial-dependent apoptotic pathways leading to cell death in cultured H9c2 myocardial cells.  相似文献   

11.
Oxidants such as H(2)O(2) can induce a low level of apoptosis at low concentrations but at higher concentrations cause necrosis. Higher concentrations of H(2)O(2) also inhibit the induction of apoptosis by chemotherapy drugs. One theory is that, at higher concentrations, H(2)O(2) causes direct oxidative inactivation of caspase-3 activity, thus preventing the apoptotic pathway from being used. We find that treatment of recombinant caspase-3 with H(2)O(2) can partially reduce its enzymatic activity: However, the following findings show that this does not occur in the cell. (1) The inhibition by H(2)O(2) of VP-16-induced apoptosis and cellular caspase-3 activity can be overcome by adding inhibitors of poly(ADP-ribose) polymerase (PARP) at sub-stoichiometric concentrations. (2) Delayed addition of H(2)O(2) to VP-16-treated cells prevents additional caspase induction but does not inhibit the caspase activity that has already been generated. (3) H(2)O(2) is a poor inhibitor of caspase-3 activity in cell lysates. (4) Addition of H(2)O(2) to cells inhibits activation of caspase-9, which is required for activation of caspase-3. We conclude that inhibition of caspase-3 activity in the cell occurs indirectly at a step located upstream of caspase-3 activation. H(2)O(2) acts in part by inducing DNA strand breaks and activating PARP, thus depleting the cells of ATP. When this pathway is blocked, even high concentrations of H(2)O(2) can induce caspase-9 and -3 activation and cause apoptosis.  相似文献   

12.
Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver.  相似文献   

13.
p38 mitogen-activated protein kinase is activated and involved in cleavage of caspase-3 during apoptosis induced by a number of stimuli. However, the signaling events triggered by p38 that result in caspase-3 activation are still unknown. In human leukemia cells, two reactive oxygen species, singlet oxygen and hydrogen peroxide (H(2)O(2)), selectively stimulated the phosphorylation of p38. Preincubation of cells with SB203580, a specific inhibitor of p38, dose dependently inhibited DNA fragmentation induced by singlet oxygen but not by H(2)O(2). Protection from apoptosis by SB203580 correlated with inhibition of caspase-3, and several events that are associated with caspase-3 activation, including Bid cleavage, decrease in mitochondrial transmembrane potential and release of cytochrome c from mitochondria, whereas caspase-8 cleavage was not affected by this inhibitor. In contrast, blockade of caspase-8 with Ile-Glu-Thr-Asp-fluoromethyl ketone is sufficient to prevent formation of DNA fragments and to inhibit all the above signaling events, with exception of p38 phosphorylation, in both singlet oxygen- and H(2)O(2)-treated cells. These data suggest that caspase-3 activation is regulated through redundant signaling pathways that involve p38 and caspase-8 acting upstream of Bid during singlet oxygen-induced apoptosis, whereas the activation of caspase-3 by H(2)O(2) is only governed by a caspase-8-mediated apoptotic pathway.  相似文献   

14.
To investigate the role of mitogen-activated protein kinase (MAPK) and downstream events in cadmium (Cd)-induced neuronal apoptosis executed via the mitochondrial apoptotic pathway, this study used the PC-12 cell line as a neuronal model. The result showed that Cd significantly decreased cell viability and the Bcl-2?/?Bax ratio and increased the percentage of apoptotic cells, release of cytochrome c, caspase-3, and poly(ADP-ribose) polymerase cleavage, and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G. In addition, exposure to Cd-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2?/?Bax ratio and cytochrome c release and suppressed caspase-3 and poly(ADP-ribose) polymerase cleavage and AIF and endonuclease G nuclear translocation. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathway played an important role in Cd-induced PC12 cells apoptosis.  相似文献   

15.
Cadmium (Cd) is an extremely toxic metal capable of severely damaging several organs, including the brain. Studies have shown that Cd induces neuronal apoptosis partially by activating the mitogen-activated protein kinase (MAPK) pathways. However, the underlying mechanism of MAPK involving the mitochondrial apoptotic pathway in neurons remains unclear. In this study, primary rat cerebral cortical neurons were exposed to Cd, which significantly decreased cell viability and the B-cell lymphoma 2/Bcl-2 associate X protein (Bcl-2/Bax) ratio and increased the percentage of apoptotic cells, release of cytochrome c, cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and nuclear translocation of apoptosis-inducing factor (AIF). In addition, Cd induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2/Bax ratio, release of cytochrome c, cleavages of caspase-3 and PARP, and nuclear translocation of AIF. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathways play important roles in Cd-induced neuronal apoptosis.  相似文献   

16.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd may induce neuronal apoptosis in part through activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (Erk1/2) pathways. However, the underlying mechanism remains enigmatic. Here we show that Cd induced generation of reactive oxygen species (ROS), leading to apoptosis of PC12 and SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine (NAC) scavenged Cd-induced ROS, and prevented cell death, suggesting that Cd-induced apoptosis is attributed to its induction of ROS. Furthermore, we found that Cd-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), leading to activation of Erk1/2 and JNK, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented Cd-induced activation of Erk1/2 and JNK, as well as cell death. Cd-induced ROS was also linked to the activation of caspase-3. Pretreatment with inhibitors of JNK (SP600125) and Erk1/2 (U0126) partially blocked Cd-induced cleavage of caspase-3 and prevented cell death. However, zVAD-fmk, a pan caspase inhibitor, only partially prevented Cd-induced apoptosis. The results indicate that Cd induction of ROS inhibits PP2A and PP5, leading to activation of JNK and Erk1/2 pathways, and consequently resulting in caspase-dependent and -independent apoptosis of neuronal cells. The findings strongly suggest that the inhibitors of JNK, Erk1/2, or antioxidants may be exploited for prevention of Cd-induced neurodegenerative diseases.  相似文献   

17.
We report here the structure-functional characterization of a novel intronless gene, BRCC2, located on human chromosome 11q24.1. BRCC2 open reading frame (327 bp) codes for an approximately 12-kDa protein (108 amino acids (aa)) localized predominantly in the cytosol and to a lesser extent in the mitochondria. Ectopic expression of BRCC2 cDNA also was found in both the cytosol and mitochondria. Exogenous expression of BRCC2 caused apoptotic cell death in three different cell lines as evidenced by enhanced chromatin condensation, DNA fragmentation, or an enhanced number of cells in the sub-G(1) phase. In human prostate cancer cells (PC-3), BRCC2-induced DNA fragmentation was blocked efficiently by coexpression of the anti-apoptotic molecule, Bcl-X(L). Transient transfection of BRCC2 cDNA into PC-3 cells in the presence of a broad-range caspase inhibitor, Z-VAD-fmk (100 microM, 24 h), abrogated DNA fragmentation. Consistently, BRCC2 expression correlated with the activation of caspase-3 and caspase-9. An N-terminal deletion mutant of BRCC2 (10.2 kDa, Delta1-16 aa) lacking a BH3-like domain (5-12 aa, LPIEGQEI) or BRCC2 containing a mutant BH3-like domain (leucine 5-->glutamate) failed to induce apoptosis, whereas a C-terminal deletion mutant (6.8 kDa, Delta62-108 aa) retained the apoptotic activity comparable to the full-length BRCC2. Finally, the treatment of HeLa cells with doxorubicin or hydrogen peroxide (H(2)O(2)) led to an increase in the mitochondrial (heavy membrane) level of endogenous BRCC2 (doxorubicin (100 ng/ml), 5 h, approximately 2-fold; H(2)O(2) (200 microM), 2 h, approximately 2-fold). These findings demonstrate that BRCC2 functions as a proapoptotic molecule and suggest that BRCC2 induces a caspase-dependent mitochondrial pathway of cell death.  相似文献   

18.
Kim MS  Lee J  Lee KM  Yang SH  Choi S  Chung SY  Kim TY  Jeong WH  Park R 《Life sciences》2003,73(10):1231-1243
Mistletoe lectin-II, a major component of Korean mistletoe (Viscum album var. coloratum) induces apoptotic death in cancer cells. In this study, we demonstrated that lectin-II induced the generation of pro-oxidants and thus resulted in the apoptotic death of human myeloleukemic U937 cells. We observed that lectin-II-induced apoptotic death was inhibited by antioxidants including reduced glutathione (GSH), N-acetylcysteine (NAC), ebselen, mnTBP, catalase and pyrrolidine dithiocarbamate (PDTC). GSH and NAC also abolished the apoptotic DNA ladder pattern fragmentation of U937 cells after lectin-II stimulation. Obviously, lectin-II treatment of cells resulted in a remarkable generation of intracellular hydrogen peroxide (H2O2) as an early event, which was monitored fluorimetrically using scopoletin-horse radish peroxidase (HRP) assay and peroxide-sensitive fluorescent probe, DCF-DA. In addition, antioxidants inhibited the activation of c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) as well as cytosolic release of cytochrome c by mistletoe lectin-II. Moreover, lectin-II-induced activation of caspase-9 and 3-like protease and cleavage of poly(ADP-ribose) polymerase (PARP) were inhibited by pretreatment of cells with thiol antioxidants, GSH and NAC. Taken together, these results suggest that Korean mistletoe lectin-II is a strong inducer of pro-oxidant generation such as H2O2, which mediates the JNK/SAPK activation, cytochrome c release, activation of caspase-9 and caspase 3-like protease, and PARP cleavage in human myeloleukemic U937 cells.  相似文献   

19.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

20.
Prostaglandin (PG) A2 has been reported to inhibit the growth or induce apoptosis of various tumor cells. In the present study, PGA2 inhibited the growth of HL-60 cells and concomitantly-induced nuclear condensation and DNA fragmentation, characteristics of apoptosis. Down-regulation of c-myc mRNA, and activation of caspase-3 were observed in the PGA2 -treated cells. PGA2-induced DNA fragmentation was completely abolished in the presence of zVAD-Fmk or zDEVD-Fmk. But, relative cell survival was not improved up to that of untreated cells by pretreatment of caspase inhibitors, and c-myc down-regulation was not recovered by caspase inhibitors, either. Moreover, cytochrome c release and activation of caspase-9 was also observed in apoptotic cells and a specific inhibitor of caspase-9 (zLEHD-Fmk) prevented both DNA fragmentation and activation of caspase-3, but not relative cell survival, implying the upstream mitochondrial event of caspase-3 activation. In addition, antagonistic Fas antibody (ZB4) exerted no effect on the apoptosis. Taken together, these results suggest that PGA2 may induce the apoptosis as well as growth inhibition in HL-60 cells, and cytochrome c release and caspase activation seem to play a critical role in this apoptosis which might be independent or downstream of growth inhibition associated with c-myc down-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号