首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The small ribosomal subunit contains 16S rRNA in prokaryotes and 18S rRNA in eukaryotes. Even though it has been known that some small ribosomal sequences are conserved in 16S rRNA and 18S rRNA molecules, they have been used separately for taxonomic and phylogenetic studies. Here, we report the existence of two highly conserved ribosomal sequences in all organisms that allow the amplification of a zone containing approximately 495 bp in prokaryotes and 508 bp in eukaryotes which we have named the "Universal Amplified Ribosomal Region" (UARR). Amplification and sequencing of this zone is possible using the same two universal primers (U1F and U1R) designed on the basis of two highly conserved ribosomal sequences. The UARR encompasses the V6, V7 and V8 domains from SSU rRNA in both prokaryotes and eukaryotes. The internal sequence of this zone in prokaryotes and eukaryotes is variable and the differences become less marked on descent from phyla to species. Nevertheless, UARR sequence allows species from the same genus to be differentiated. Thus, by UARR sequence analysis the construction of universal phylogenetic trees is possible, including species of prokaryotic and eukaryotic microorganisms together. Single isolates of prokaryotic and eukaryotic microorganisms from different sources can be identified by amplification and sequencing of UARR using the same pair of primers and the same PCR and sequencing conditions.  相似文献   

2.
We constructed the putative secondary structures of the small subunit rRNAs (SSU rRNA) from three strepsipteran insects. The primary sequences of the strepsipteran SSU rRNAs are unusually long due to unique and long insertions. In spite of these insertions, the basic shapes of their secondary structures are well maintained as shown in those of other eukaryotes, because these insertions appear mainly in the variable regions. The secondary structures for the V1, V3, V5, V8, and V9 regions are well conserved, even though the primary structures of V1, V5, and V8 regions are quite variable. However, the predicted secondary structures for the V2, V4, and V7 regions are quite different from those of other insects. In the V4 and V7 regions, helices specific to the Strepsiptera exist. These helices have not been reported in other organisms so far. Similarly, four eukaryotic specific helices (E8-1, E10-2, E23-4 and E45-1) not reported in insects exist in the V2, V4, and V8 regions. These helices are formed by the inserted sequences. The secondary structures of the expanded segments of the strepsipteran SSU rRNA were applied to infer the phylogenetic position of Strepsiptera, one of the most enigmatic problems in insect phylogeny. Only the secondary structure of the V7 region showed the weak Strepsiptera/Diptera sister-group relationship.  相似文献   

3.
《Gene》1997,184(2):221-227
The nucleotide (nt) sequence of a small subunit (18S) ribosomal RNA gene from the plerocercoid of Spirometra erinaceieuropaei (SEP) was determined. The gene with 2182 bp in length is larger than that of most eukaryotes. Extra nt sequences occur in regions known to be variable (V4 and V7). The predicted secondary structure of the nt positions 679–933 (V4) revealed different helices from that of other eukaryotes. The region between nt positions 1540 and 1749 (V7) was different from that of other eukaryotes, but the secondary structure prediction by computer analysis demonstrated that this part of 18S rRNA sequence from S. erinaceieuropaei may form a single extended helix. Nt that were aligned with those of nine other parasites were used to estimate phylogenetic relationships. The data presented here clearly indicate that S. erinaceieuropaei is closely related to Echinococcus granulosus.  相似文献   

4.
5.
In eukaryotes, in vivo formation of the two ribosomal subunits from four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (r-proteins) involves more than 150 nonribosomal proteins and around 100 small noncoding RNAs. It is temporally and spatially organized within different cellular compartments: the nucleolus, the nucleoplasm, and the cytoplasm. Here, we present a way to analyze how eukaryotic r-proteins of the small ribosomal subunit (SSU) assemble in vivo with rRNA. Our results show that key aspects of the assembly of eukaryotic r-proteins into distinct structural parts of the SSU are similar to the in vitro assembly pathway of their prokaryotic counterparts. We observe that the establishment of a stable assembly intermediate of the eukaryotic SSU body, but not of the SSU head, is closely linked to early rRNA processing events. The formation of assembly intermediates of the head controls efficient nuclear export of the SSU and cytoplasmic pre-rRNA maturation steps.  相似文献   

6.
Summary An 890-bp sequence from the central region ofDrosophila melanogaster 26S ribosomal DNA (rDNA) has been determined and used in an extensive comparative analysis of the central domain of the large subunit ribosomal RNA (lrRNA) from prokaryotes, organelles, and eukaryotes. An alignment of these different sequences has allowed us to precisely map the regions of the central domain that have highly diverged during evolution. Using this sequence comparison, we have derived a secondary structure model of the central domain ofDrosophila 26S ribosomal RNA (rRNA). We show that a large part of this model can be applied to the central domain of lrRNA from prokaryotes, eukaryotes, and organelles, therefore defining a universal common structural core. Likewise, a comparative study of the secondary structure of the divergent regions has been performed in several organisms. The results show that, despite a nearly complete divergence in their length and sequence, a common structural core is also present in divergent regions. In some organisms, one or two of the divergent regions of the central domain are removed by processing events. The sequence and structure of these regions (fragmentation spacers) have been compared to those of the corresponding divergent regions that remain part of the mature rRNA in other species.  相似文献   

7.
We have used comparative analyses of prokaryotic and eukaryotic small subunit ribosomal RNAs to deduce a secondary structure for the Dictyostelium discoideum 18S rRNA. Most of the duplex regions are evolutionarily conserved in all organisms. We have taken advantage of the variation to the D. discoideum sequence (relative to the yeast and frog 19S rRNAs) to identify additional helical regions which are common to the eukaryotic 18S rRNAs.  相似文献   

8.
The determination of the 16S and 23S rRNA secondary structure models was initiated shortly after the first complete 16S and 23S rRNA sequences were determined in the late 1970s. The structures that are common to all 16S rRNAs and all 23S rRNAs were determined using comparative methods from the analysis of thousands of rRNA sequences. Twenty-plus years later, the 16S and 23S rRNA comparative structure models have been evaluated against the recently determined high-resolution crystal structures of the 30S and 50S ribosomal subunits. Nearly all of the predicted covariation-based base pairs, including the regular base pairs and helices, and the irregular base pairs and tertiary interactions, were present in the 30S and 50S crystal structures.  相似文献   

9.
The V4 region of the small subunit (18S) ribosomal RNA was examined in 72 different sequences representing a broad sample eukaryotic diversity. This domain is the most variable region of the 18S rRNA molecule and ranges in length from ca. 230 to over 500 bases. Based upon comparative analysis, secondary structural models were constructed for all sequences and the resulting generalized model shows that most organisms possess seven helices for this region. The protists and two insects show from one to as many as four helices in addition to the above seven. In this report, we summarize secondary structure information presented elsewhere for the V4 region, describe the general features for helical and apical regions, and identify signature sequences useful in helix identification. Our model generally agrees with other current concepts; however, we propose modifications or alternative structures for the start of the V4 region, the large protist inserts, and the sector that may possibly contain a pseudoknot.  相似文献   

10.
Alkemar G  Nygård O 《Biochemistry》2006,45(26):8067-8078
Expansion segment ES6 in 18S ribosomal RNA is, unlike many other expansion segments, present in all eukaryotes. The available data suggest that ES6 is located on the surface of the small ribosomal subunit. Here we have analyzed the secondary structure of the complete ES6 sequence in intact ribosomes from three eukaryotes, wheat, yeast, and mouse, representing different eukaryotic kingdoms. The availability of the ES6 sequence for modification and cleavage by structure sensitive chemicals and enzymatic reagents was analyzed by primer extension and gel electrophoresis on an ABI 377 automated DNA sequencer. The experimental results were used to restrict the number of possible secondary structure models of ES6 generated by the folding software MFOLD. The modification data obtained from the three experimental organisms were very similar despite the sequence variation. Consequently, similar secondary structure models were obtained for the ES6 sequence in wheat, yeast, and mouse ribosomes. A comparison of sequence data from more than 6000 eukaryotes showed that similar structural elements could also be formed in other organisms. The comparative analysis also showed that the extent of compensatory base changes in the suggested helices was low. The in situ structure analysis was complemented by a secondary structure analysis of wheat ES6 transcribed and folded in vitro. The obtained modification data indicate that the secondary structure of the in vitro transcribed sequence differs from that observed in the intact ribosome. These results suggest that chaperones, ribosomal proteins, and/or tertiary rRNA interactions could be involved in the in vivo folding of ES6.  相似文献   

11.
The majority of constitutive proteins in the bacterial 30S ribosomal subunit have orthologues in Eukarya and Archaea. The eukaryotic counterparts for the remainder (S6, S16, S18 and S20) have not been identified. We assumed that amino acid residues in the ribosomal proteins that contact rRNA are to be constrained in evolution and that the most highly conserved of them are those residues that are involved in forming the secondary protein structure. We aligned the sequences of the bacterial ribosomal proteins from the S20p, S18p and S16p families, which make multiple contacts with rRNA in the Thermus thermophilus 30S ribosomal subunit (in contrast to the S6p family), with the sequences of the unassigned eukaryotic small ribosomal subunit protein families. This made it possible to reveal that the conserved structural motifs of S20p, S18p and S16p that contact rRNA in the bacterial ribosome are present in the ribosomal proteins S25e, S26e and S27Ae, respectively. We suggest that ribosomal protein families S20p, S18p and S16p are homologous to the families S25e, S26e and S27Ae, respectively.  相似文献   

12.

Background

Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes.

Methodology/Principal Findings

We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM) and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs) projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments.

Conclusions/Significance

Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment.  相似文献   

13.
The complete nucleotide sequence of the SSU rRNA gene from the soil bug, Armadillidium vulgare (Crustacea, Isopoda), was determined. It is 3214 bp long, with a GC content of 56.3%. It is not only the longest SSU rRNA gene among Crustacea but also longer than any other SSU rRNA gene except that of the strepsipteran insect, Xenos vesparum (3316 bp). The unusually long sequence of this species is explained by the long sequences of variable regions V4 and V7, which make up more than half of the total length. RT-PCR analysis of these two regions showed that the long sequences also exist in the mature rRNA and sequence simplicity analysis revealed the presence of slippage motifs in these two regions. The putative secondary structure of the rRNA is typical for eukaryotes except for the length and shape variations of the V2, V4, V7, and V9 regions. Each of the V2, V4, and V7 regions was elongated, while the V9 region was shortened. In V2, two bulges, located between helix 8 and helix 9 and between helix 9 and helix 10, were elongated. In V4, stem E23-3 was dramatically expanded, with several small branched stems. In V7, stem 43 was branched and expanded. Comparisons with the unusually long SSU rRNAs of other organisms imply that the increase in total length of SSU rRNA is due mainly to expansion in the V4 and V7 regions. Received: 2 March 1999 / Accepted: 22 July 1999  相似文献   

14.
《Gene》1997,184(1):55-63
Due to their structural complexity and their evolutionary dimension, rRNAs are the most investigated nucleic acids in prokaryotes, eukaryotes and organelles. However, no complete sequence of a mitochondrial small subunit (SSU) rRNA was available in the basidiomycotina subdivision. The mitochondrial gene encoding the SSU rRNA of the cultivated basidiomycete Agrocybe aegerita was cloned and its complete nucleotide sequence achieved; the 5′- and 3′-ends were localized by nuclease S1 mapping, leading to a size of 3277 nt. The secondary structure of the SSU rRNA (1906 nt in size) possessed all the helices and loops of the prokaryotic model; a unique modification was found in a conserved nucleotide predicted by the model: the nt 487 was A instead of C. The same modification, has been found in all the partial basidiomycete mitochondrial sequences available in databases. The Agrocybe aegerita SSU rRNA was characterized by large and unusual extensions leading to additional helices in the variable domains V4, V6 and V9, which were the longest of the known prokaryotic or mitochondrial SSU rRNAs. Nucleotide sequence analysis indicated a 1371-bp intron, belonging to subgroup-IC2, located in a conserved loop in the 3′-part of the SSU rRNA. This intron, which is the second example reported in a fungal mitochondrial SSU rDNA, encoded a putative protein (407 aa) sharing homologies with endonucleases involved in group-I intron mobility. This report constitutes the first complete mitochondrial SSU rRNA sequence and secondary structure of any member of the basidiomycotina subdivision.  相似文献   

15.
In the protist Euglena gracilis, the cytosolic small subunit (SSU) rRNA is a single, covalently continuous species typical of most eukaryotes; in contrast, the large subunit (LSU) rRNA is naturally fragmented, comprising 14 separate RNA molecules instead of the bipartite (28S + 5.8S) eukaryotic LSU rRNA typically seen. We present extensively revised secondary structure models of the E. gracilis SSU and LSU rRNAs and have mapped the positions of all of the modified nucleosides in these rRNAs (88 in SSU rRNA and 262 in LSU rRNA, with only 3 LSU rRNA modifications incompletely characterized). The relative proportions of ribose-methylated nucleosides and pseudouridine (∼ 60% and ∼ 35%, respectively) are closely similar in the two rRNAs; however, whereas the Euglena SSU rRNA has about the same absolute number of modifications as its human counterpart, the Euglena LSU rRNA has twice as many modifications as the corresponding human LSU rRNA. The increased levels of rRNA fragmentation and modification in E. gracilis LSU rRNA are correlated with a 3-fold increase in the level of mispairing in helical regions compared to the human LSU rRNA. In contrast, no comparable increase in mispairing is seen in helical regions of the SSU rRNA compared to its homologs in other eukaryotes. In view of the reported effects of both ribose-methylated nucleoside and pseudouridine residues on RNA structure, these correlations lead us to suggest that increased modification in the LSU rRNA may play a role in stabilizing a ‘looser’ structure promoted by elevated helical mispairing and a high degree of fragmentation.  相似文献   

16.
PCR primers targeting conserved regions of the SSU rRNA gene are commonly used in bacterial community studies. For microbes associated with eukaryotes, co-amplification of eukaryotic DNA may preclude the analysis. We present a simple and efficient PCR strategy to obtain pure bacterial rDNA amplicons from samples predominated by eukaryotic DNA.  相似文献   

17.
18.
19.
The secondary structure of V4, the largest variable area of eukaryotic small subunit ribosomal RNA, was re-examined by comparative analysis of 3253 nucleotide sequences distributed over the animal, plant and fungal kingdoms and a diverse set of protist taxa. An extensive search for compensating base pair substitutions and for base covariation revealed that in most eukaryotes the secondary structure of the area consists of 11 helices and includes two pseudoknots. In one of the pseudoknots, exchange of base pairs between the two stems seems to occur, and covariation analysis points to the presence of a base triple. The area also contains three potential insertion points where additional hairpins or branched structures are present in a number of taxa scattered throughout the eukaryotic domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号