共查询到20条相似文献,搜索用时 0 毫秒
1.
Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. 相似文献
2.
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has developed during the past decade into a versatile tool for biopolymer analysis. The aim of this review is to summarize this development and outline the applications, which have been enabled for routine use in the field of nucleic acid analysis. These include the anlaysis of mutations, the resequencing of amplicons with a known reference sequence, and the quantitative analysis of gene expression and allelic frequencies in complex DNA mixtures. 相似文献
3.
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues. 相似文献
4.
Mass spectrometric analysis of reaction products allows simultaneous characterization of activities mediated by multifunctional enzymes. By use of MALDI-TOF mass spectrometry, the relative influence of magnesium and manganese promoted exonuclease and phosphatase activities of Esherichia coli exonuclease III have been quantitatively measured, offering a rapid and sensitive alternative to radioactivity quantification and gel electrophoresis procedures for determination of reaction rate constants. Manganese is found to promote higher levels of exonuclease activity, which could be a source of mutagenic effects if this ion were selected as the natural cofactor. Several potential applications of these methods to quantitative studies of DNA repair chemistry are also described. 相似文献
5.
Pooling of DNA samples before genotyping is a valuable means of streamlining large-scale genotyping efforts in disease association studies, single-nucleotide polymorphism (SNP) validation or mutant allele screening programs. In this report, we explore the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to quantitative analysis of SNPs. The measurements are based on MALDI-TOF MS analysis of primer extension assays performed on standard mixtures of pooled PCR products at several test loci. The inherent high molecular weight resolution of MALDI-TOF MS conveys high specificity and good signal-to-noise ratio for performing accurate quantitation. The methods described maximize the sensitivity and quantitative capacity of MALDI-TOF MS while preserving the throughput and economic advantages of the MALDI-TOF platform. Using the format described, we demonstrate that allele frequencies as low as 5% can be detected quantitatively and unambiguously. 相似文献
6.
In the present study, two pre-analytic processes for mass spectrometric bacterial identification were compared: the time-consuming reference method, chemical extraction, and the direct smear technique directly using cultured colonies without any further preparation. These pre-analytic processes were compared in the identification of a total of 238 strains of anaerobic bacteria representing 34 species. The results showed that 218/238 strains were identified following chemical extraction, 185 identifications (77.7%) were secured to both genus and species [log(score) > 2.0] whereas 33 identifications (14%) were secured to genus only [log(score) between 1.7 and 2.0]. Following direct smear, 207/238 anaerobic bacteria were identified, 158 identifications (66.4%) were secured to both genus and species [log(score) > 2.0] whereas 49 identifications were secured to genus only [log(score) between 1.7 and 2.0]. Twenty strains were not identified [log(score) < 1.7] by MALDI-TOF MS following chemical extraction whereas 31 strains were not identified with the direct smear technique. Although direct smear led to a significant decrease of the log(score) values for the Clostridium genus and the Gram positive anaerobic bacteria (GPAC) group (p < 0.0001, Wilcoxon test), identification to both species and genus were not changed. However these differences were not statistically significant (p = 0.1, Chi square). Therefore, MALDI-TOF MS identification following the direct smear technique appears to both non-inferior to the reference method and relevant for anaerobic bacteria identification. 相似文献
7.
Chlorinated bisbibenzyls of the bazzanin type are detected in crude bryophyte plant extracts of Bazzania trilobata from different locations using MALDI-TOF mass spectrometry. These results show that these chlorinated compounds are not artefacts of an incidental occurrence or of the sample preparation but are genuine and produced by the liverwort or an endosymbiotic metabolism. Further experiments were performed concerning the in vitro chlorination of the halogen free basic unit isoplagiochin C. 相似文献
8.
Introduction: The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine. 相似文献
9.
MOTIVATION: Single Nucleotide Polymorphisms (SNPs) are believed to contribute strongly to the genetic variability in living beings, in particular their disease or drug side effect predispositions. Mutation-induced sequence variations are playing an important role in the development of cancer, among others. From this, it is clear that SNP and mutation discovery is of great interest in today's Life Sciences. Currently, such discovery is often performed utilizing electrophoresis-based Sanger Sequencing. Discovery of SNPs can also be performed by multiple sequence alignment of publicly available sequence data, but recent studies indicate that only a small percentage of SNPs can be discovered using this approach and, in particular, that SNPs with low frequency are often missed. Other SNP discovery methods only indicate the presence of a SNP in a sample region, but fail to resolve its characterization and localization. RESULTS: We present a method to discover mutations and SNPs using base-specific cleavage and mass spectrometry. An amplicon of known reference sequence with length usually between 100 and 1000 nt is amplified, transcribed, and cleaved using base-specific endonucleases such as RNAse A or T1. The resulting cleavage products (or fragments) are analyzed by MALDI-TOF mass spectrometry and, comparing the measured spectra with those predicted in-silico, the goal is to discover and pinpoint sequence variations of the sample sequence compared to the reference sequence. A time-efficient algorithm for discovering sequence variations is presented that enables fast analysis of such variations even if the sample sequence differs significantly from the reference sequence. 相似文献
10.
The structural heterogeneity of polyphenols from cranberries, grape seed extracts, sorghum and pomegranate was characterized by MALDI-TOF MS. Polyphenolics were isolated by liquid chromatography and subjected to MALDI-TOF MS using trans-3-indoleacrylic acid as the matrix. Spectrometric analysis gave information on degree of polymerization, monomeric substitution, and the nature of intermolecular bonds. Cranberry polyflavan-3-ols had variation in interflavan bonds (A- and B-types) and contained polyflavan-3-ols linked to anthocyanins through a CH3-CH bridge. Polygalloyl-polyflavan-3-ols in grape seed extract had large variation in the degree of galloyl substitution. Sorghum polyflavans had structural heterogeneity in glycosylation and hydroxylation. Pomegranate hydrolyzable tannins that correspond to previously described structures were detected, such as punicalagin, but others that correspond to oligomeric ellgitannins in which two to five core glucose units are cross-linked by dehydrodigalloyl and or valoneoyl units were also observed. Results demonstrate that large heterogeneity occurs in degree of polymerization, intermolecular bonds, pattern of hydroxylation, and substitution with monosaccharides and gallic acid. 相似文献
11.
Protein extracts, made to leaves harvested from the stolons of the pasture legume white clover ( Trifolium repens L.) at two developmental stages (newly initiated; onset of senescence) were purified further using reverse-phase and ionexchange
chromatography. Fractions enriched with the ethylene biosynthetic enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase were
selected for each stage and the final, partially purified fraction was subjected to twodimensional gel electrophoresis (2DE).
Antibodies raised against a recombinant ACC oxidase (ACO) from white clover (antiTR-ACO2) recognised a series of spots of
differing pI suggesting that ACO undergoes post-translational modifications. Further, the pattern differed between the ACO
proteins partially purified from newly initiated leaves with leaves at the onset of senescence suggesting that the environmental
and developmental cues that operate in each tissue influences the type and/or degree of post-translational modifications of
the ACO protein. MALDI-TOF mass spectrometry was used to identify protein spots associated with the ACO proteins. Protein
with identities to an ACO isoform from Oryza sativa, and a phosphoribulokinase from Arabidopsis thaliana were identified in the 2DE separations from newly initiated leaves, while an isoflavone reductase from Medicago sativa was identified in the 2DE separation of the senescent leaf extract. 相似文献
13.
Archaea and a number of groups of environmentally important bacteria, e.g., sulfate-reducing bacteria, anoxygenic phototrophs, and some thermophiles, are difficult to characterize using current methods developed for phenotypically differentiating heterotrophic bacteria. We have evaluated matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) as a rapid method for identifying different groups of extremophilic prokaryotes using a linear mass spectrometer (Micromass, UK). The instrument is designed to acquire mass-spectral patterns from prokaryotic cell-wall components between masses of 500 and 10,000 Da in a statistically robust manner and create a database that can be used for identification. We have tested 28 archaea (10 genera, 20 spp.) and 42 bacteria (25 genera, 37 spp.) and found that all species yield reproducible, unique mass-spectral profiles. As a whole, the profiles for the archaea had fewer peaks and showed less differentiation compared to the bacteria, perhaps reflecting fundamental differences in cell-wall structure. The halophilic archaea all had consistent patterns that showed little differentiation; however, the software was able to consistently distinguish Halobacterium salinarium, Halococcus dombrowski, and Haloarcula marismortui from one another, although it could not always correctly distinguish four strains of Hb. salinarium
from one another. The method was able to reliably identify 10 5 cells of either
Albidovulum inexpectatum or Thermococcus litoralis and could detect as low as 10 3
cells. We found that the matrix, alpha-cyano-4-hydroxy-cinnamic acid yielded better spectra for archaea than 5-chloro-2-mercapto-benzothiazole. Overall, the method was rapid, required a minimum of sample processing, and was capable of distinguishing and identifying a very diverse group of prokaryotes.Communicated by F. Robb 相似文献
14.
Using SDS-PAGE and MALDI-TOF mass spectrometry, we investigated the difference in the molecular structure between human and bovine ceruloplasmin. In both cases, we found that the protein is present in two majors forms of different molecular mass. The difference between human and bovine ceruloplasmin was more obvious when characterized by MALDI-TOF than with the SDS-PAGE analysis. Furthermore, we established that the N-glycoside content of both enzymes is dissimilar and that the N-glycosyl moieties are distributed in a distinctive fashion in two glycoproteins. Finally, it appeared that both proteins exhibited different cleavage patterns after treatment with trypsin. This study indicates that human and bovine ceruloplasmin differ not only in sugar composition but also in primary structure. 相似文献
15.
This study addressed the question of which properties in MALDI-TOF spectra are relevant to the task of identifying mass and abundance of a peptide species in human serum. Data of this type are common to biomarker studies, but significant within- and between-spectrum variabilities make quantifying biologically induced features difficult. We investigated this signal content and quantified the existence, or lack, of peptide-induced signal (as manifest in a multiresolution decomposition) by generating spectra from human serum in which the abundance of peptides of specific masses is controlled by a sequence of dilutions. The intensities of the corresponding features were directly proportional to peptide concentration. The primary goal was to exhibit some quantifiable properties of raw spectra from this application of MALDI-TOF mass spectrometry. Although no recommendations are given regarding the best method for processing these data, the results confirm the utility of a simple method, based on wavelets, for defining and quantifying features related to low abundance peptide species in a heterogeneous set of complex spectra. Estimates on lower limits of detectable peptide abundance (in the 20-nmol range) and on the number of features present in a spectrum are made possible by the controlled experimental design, the use of a large external reference data set, and dependence on relatively few modeling assumptions. 相似文献
16.
Single-nucleotide polymorphisms (SNPs) have great potential for use in genetic-mapping studies, which locate and characterize genes that are important in human disease and biological function. For SNPs to realize their full potential in genetic analysis, thousands of different SNP loci must be screened in a rapid, accurate and cost-effective manner. Matrix-assisted laser desorption-ionization-time-of-flight (MALDI-TOF) mass spectrometry is a promising tool for the high-throughput screening of SNPs, with future prospects for use in genetic analysis. 相似文献
17.
Proteomic approaches have been used for detection and identification of cytochromes P450 forms from highly purified membrane preparations of human liver. These included the protein separation by 2D-and/or 1D-electrophoresis and molecular scanning of a SDS-PAGE gel fragment in a range 45–66 kDa (this area corresponds molecular weights of cytochromes P450). The analysis of protein content was statistically evaluated by means of an original 1D-ZOOMER software package which allowed to carry out the processing of mass spectra mixture instead of individual mass spectra used by standard techniques. In the range 45–66 kDa we identified 13 microsomal membrane proteins including such cytochrome P450 forms as CYPs 1A2, 1B1, 2A6, 2E1, 2C8, 2C9, 2C10, 2D6, 3A4, 4A11, 4F2. Study of enzymatic activities of human liver microsomal cytochrome P450 isoforms CYP 1A, 2B, 3A, and 2E revealed the decrease in the rates of O-dealkylation and N-demethylation catalyzed by CYP 450 1A1/1A2 and 3A4 under pathological conditions, whereas 7-benzyloxyresorufin-O-debenzylase activity (which characterizes the total activity of CYP 2B and CYP 2C), the activities of CYP 2E1 (methanol oxidation), 7-pentoxyresorufin-O-dealkylation (CYP 2B), 7-ethoxy-and 7-methoxycoumarin-O-dealkylases (CYP 2B1) remained basically unchanged. 相似文献
19.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000–20 000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions. 相似文献
20.
Until recently, microbial identification in clinical diagnostic laboratories has mainly relied on conventional phenotypic and gene sequencing identification techniques. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) devices has revolutionized the routine identification of microorganisms in clinical microbiology laboratories by introducing an easy, rapid, high throughput, low-cost, and efficient identification technique. This technology has been adapted to the constraint of clinical diagnostic laboratories and has the potential to replace and/or complement conventional identification techniques for both bacterial and fungal strains. Using standardized procedures, the resolution of MALDI-TOF MS allows accurate identification at the species level of most Gram-positive and Gram-negative bacterial strains with the exception of a few difficult strains that require more attention and further development of the method. Similarly, the routine identification by MALDI-TOF MS of yeast isolates is reliable and much quicker than conventional techniques. Recent studies have shown that MALDI-TOF MS has also the potential to accurately identify filamentous fungi and dermatophytes, providing that specific standardized procedures are established for these microorganisms. Moreover, MALDI-TOF MS has been used successfully for microbial typing and identification at the subspecies level, demonstrating that this technology is a potential efficient tool for epidemiological studies and for taxonomical classification. 相似文献
|