首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large.  相似文献   

2.
3.
Successful integration of various simultaneously perceived perceptual signals is crucial for social behavior. Recent findings indicate that this multisensory integration (MSI) can be modulated by attention. Theories of Autism Spectrum Disorders (ASDs) suggest that MSI is affected in this population while it remains unclear to what extent this is related to impairments in attentional capacity. In the present study Event-related potentials (ERPs) following emotionally congruent and incongruent face-voice pairs were measured in 23 high-functioning, adult ASD individuals and 24 age- and IQ-matched controls. MSI was studied while the attention of the participants was manipulated. ERPs were measured at typical auditory and visual processing peaks, namely, P2 and N170. While controls showed MSI during divided attention and easy selective attention tasks, individuals with ASD showed MSI during easy selective attention tasks only. It was concluded that individuals with ASD are able to process multisensory emotional stimuli, but this is differently modulated by attention mechanisms in these participants, especially those associated with divided attention. This atypical interaction between attention and MSI is also relevant to treatment strategies, with training of multisensory attentional control possibly being more beneficial than conventional sensory integration therapy.  相似文献   

4.
Spatial visual attention modulates the first negative-going deflection in the human averaged event-related potential (ERP) in response to visual target and non-target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non-target stimuli presented at five attended and non-attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus-attention conditions and decomposed the non-target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1aR and N1aL) was evoked by the left and right visual field stimuli, respectively. Component N1aR peaked ca. 9 ms earlier than N1aL. Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were no reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio-temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.  相似文献   

5.
Brain potentials were recorded from 12 normal subjects engaged in an auditory target detection task (target stimulus probability of 0.2, stimulus rate of 1 every 2 sec) when instructions were (1) to press a response button with the thumb of the dominant hand to each target or (2) to keep a mental count of each target. A pre-stimulus slow negative potential was identified before every stimulus except non-targets immediately after targets. The amplitude of the pre-stimulus negativity was significantly affected by task instructions and was up to 4 times larger during the button press than the mental count condition. In contrast, the amplitudes and latencies of the event-related components (N100, P200, N200 and P300), when slow potentials were removed by filtering, were not different as a function of press or count instructions. The immediately preceding stimulus sequence affected both the amplitude and onset latency of the pre-stimulus negativity; both measures increased as the number of preceding non-targets increased. The amplitude of the pre-stimulus negative shift to targets also increased significantly as RT speed decreased. The major portion of the pre-stimulus negative potential is considered a readiness potential (RP) reflecting preparations to make a motor response. The amplitude of the RP during the target detection task did not significantly lateralize in contrast to the RP accompanying self-paced movements.  相似文献   

6.
Event-related brain potentials (ERPs) were recorded from 74 subjects (45 men) between 18 and 82 years of age in a simple visual detection task. On each trial the subject reported the location of a triangular flash of light presented briefly 20° laterally to the left or right visual field or to both fields simultaneously. ERPs to targets exhibited a similar morphology including P1, N1, P2, N2, and P3 components across all age groups. The principal effects of advancing age were (1) a marked reduction in amplitude of the posterior P1 component (75–150 latency) together with an amplitude increase of an anterior positivity at the same latency; (2) an increase in amplitude of the P3 component that was most prominent over frontal scalp areas; and (3) a linear increase in P3 peak latency. These results extend the findings of age-related changes in P3 peak latency and distribution to a non-oddball task in the visual modality and raise the possibility that short-latency ERPs may index changes in visual attention in the elderly.  相似文献   

7.

Background

In a subset of children with unilateral Cerebral Palsy (CP) a discrepancy between capacity and performance of the affected upper limb can be observed. This discrepancy is known as Developmental Disregard (DD). Though the phenomenon of DD has been well documented, its underlying cause is still under debate. DD has originally been explained based on principles of operant conditioning. Alternatively, it has been proposed that DD results from a diminished automaticity of movements, resulting in an increased cognitive load when using the affected hand. To investigate the amount of involved cognitive load we studied Event-Related Potentials (ERPs) preceding task-related motor responses during a single-hand capacity and a dual-hand performance task. It was hypothesised that children with DD show alterations related to long-latency ERP components when selecting a response with the affected upper limb, reflecting increased cognitive load in order to generate an adequate response and especially so within the dual-hand task.

Methods

Fifteen children with unilateral CP participated in the study. One of the participants was excluded due to major visual impairments. Seven of the remaining participants displayed DD. The other seven children served as a control group. All participants performed two versions of a cue-target paradigm, a single-hand capacity and a dual-hand performance task. The ERP components linked to target presentation were inspected: the mid-latency P2 component and the consecutive long-latency N2b component.

Results

In the dual-hand performance task children with DD showed an enhancement in mean amplitude of the long-latency N2b component when selecting a response with their affected hand. No differences were found regarding the amplitude of the mid-latency P2 component. No differences were observed regarding the single-hand capacity task. The control group did not display any differences in ERPs linked to target evaluation processes between both hands.

Conclusion

These electrophysiological findings show that DD is associated with increased cognitive load when movements are prepared with the affected hand during a dual-hand performance task. These findings confirm behavioural observations, advance our insights on the neural substrate of DD and have implications for therapy.  相似文献   

8.
In the present study, the component structure of auditory event-related potentials (ERP) was studied in children of 7–9 years old by presenting stimuli with different interstimulus intervals (ISI). A short-term auditory sensory memory, as reflected by ISI effects on ERPs, was also studied. Auditory ERPs were recorded to brief unattended 1000 Hz frequent, `standard' and 1100 Hz rare, `deviant' (probability 0.1) tone stimuli with ISIs of 350, 700 and 1400 ms (in separate blocks). With the 350 ms-ISI, the ERP waveform to the standard stimulus consisted of P100-N250 peaks. With the two longer ISIs, in addition, the frontocentral N160 and N460 peaks were observed. Results suggested that N160, found with the longer ISIs, is a correlate of the adult auditory N1. In difference waves, obtained by subtracting ERP to standard stimuli from ERP to deviant stimuli, two negativities were revealed. The first was the mismatch negativity (MMN), which is elicited by any discriminable change in repetitive auditory input. The MMN data suggested that neural traces of auditory sensory memory lasted for at least 1400 ms, probably considerably longer, as no MMN attenuation was found across the ISIs used. The second, later negativity was similar to MMN in all aspects, except for the scalp distribution, which was posterior to that of the MMN.  相似文献   

9.
Nineteen-channel event-related potentials (ERPs) were studied in the GO/NOGO test in 517 healthy subjects. Multi-channel ERPs were decomposed into independent components by the method of modeling the cross-covariance structure of transient process. The research results showed that low-correlated ERP components could be obtained by this method with acceptable reliability. The identified components were associated with psychological processes, such as the attended sensory mismatch operation, decision making on the subsequent action, the action inhibition operation, and the conflict monitoring operation. In conclusion, decomposition of ERP recordings into independent components and the use of sLORETA help to localize ERP sources more accurately than the conventional ERP analysis.  相似文献   

10.
11.

Introduction

The role of inhibitory control in addictive behaviors is highlighted in several models of addictive behaviors. Although reduced inhibitory control has been observed in addictive behaviors, it is inconclusive whether this is evident in smokers. Furthermore, it has been proposed that drug abuse individuals with poor response inhibition may experience greater difficulties not consuming substances in the presence of drug cues. The major aim of the current study was to provide electrophysiological evidence for reduced inhibitory control in smokers and to investigate whether this is more pronounced during smoking cue exposure.

Methods

Participants (19 smokers and 20 non-smoking controls) performed a smoking Go/NoGo task. Behavioral accuracy and amplitudes of the N2 and P3 event-related potential (ERP), both reflecting aspects of response inhibition, were the main variables of interest.

Results

Reduced NoGo N2 amplitudes in smokers relative to controls were accompanied by decreased task performance, whereas no differences between groups were found in P3 amplitudes. This was found to represent a general lack of inhibition in smokers, and not dependent on the presence of smoking cues.

Conclusions

The current results suggest that smokers have difficulties with response inhibition, which is an important finding that eventually can be implemented in smoking cessation programs. More research is needed to clarify the exact role of cue exposure on response inhibition.  相似文献   

12.
 Movement-related potentials (MRPs) recorded from the brain are thought to vary during learning of a motor task. However, since MRPs are recorded at a very low signal-to-noise ratio, it is difficult to measure these variations. In this study we attempt to remove most of the accompanying noise thus enabling the tracking of transient phenomena in MRPs recorded during learning of a motor task. Subjects performed a simple motor task which required learning. A modified version of the matching pursuit algorithm was used in order to remove a significant portion of the electroencephalographic noise overlapping the MRPs recorded in the experiment. Small groups of MRPs were then averaged according to experimental parameters. Our results show that the power of the MRPs does not decay uniformly during learning. Instead, there is a significant peak in their power after 4 or 5 repetitions of the task. This peak is noticeable especially in electrodes placed over the prefrontal region of the cortex at times subsequent to the actual movement. The observed pattern of activity may indicate problem solving related to comprehension of the force against which the user performed the task. It is possible that this problem solving occurs in the prefrontal cortex. Received: 27 December 2000 / Accepted in revised form: 26 April 2001  相似文献   

13.
This study aimed at investigating whether a virtual reality display (VRD) is an appropriate tool for evoking visual event-related potentials (VEPs). VEPs evoked by VRD stimuli were highly similar in form to VEPs evoked by using a computer monitor, both having two dominant peaks, labeled P100 and N200. Monitor and VRD N200 latencies and amplitudes were highly correlated. However, peak latencies were longer and the peaks were broader when stimuli were presented on the VRD. Besides, VRD P100 amplitude was smaller, and an N75 peak could be seen usually only on monitor VEPs.  相似文献   

14.
Objectives: Spatial analysis of the evoked brain electrical fields during a cued revealed an extremely robust anteriorization of the positivity of a P300 microstate in the NoGo compared to the Go condition (NoGo-anteriorization in a prevailing study). To allow a neuroanatomical interpretation the NoGo-anteriorization was investigated with a new three-dimensional source tomography method (LORETA) was applied.Methods: The test contains subsets of stimuli requiring the execution (Go) or the inhibition (NoGo) of a cued motor response which can be considered as mutual control conditions for the study of inhibitory brain functions. 21-channel ERPs were obtained from 10 healthy subjects during a cued CPT, And analyzed with LORETA.Results: Topographic analyses revealed significantly different scalp distributions between the Go and the NoGo conditions in both P100 and P300 microstates, indicating that already at an early stage different neural assemblies are activated. LORETA disclosed a significant hyperactivity located in the right frontal lobe during the NoGo condition in the P300 microstate.Conclusions: The results indicate that right frontal sources are responsible for the NoGo-anteriorization of the scalp P300 which is consistent with animal and human lesion studies of inhibitory brain functions. Furthermore, it demonstrates that frontal activation is confined to a brief microstate and time-locked to phasic inhibitory motor control. This adds important functional and chronometric specificity to findings of frontal activation obtained with PET and Near-Infrared-Spectroscopy studies during the cued CPT, and suggests that these metabolic results are not due to general task demands.  相似文献   

15.
Sleep and Biological Rhythms - Auditory evoked potentials to a 2000-Hz pure tone were recorded in wakefulness and in rapid eye movement (REM) sleep. A late positive wave with a maximal amplitude...  相似文献   

16.
Stimulus selection during selective listening on the basis of simple physical stimulus features is reflected by an event-related potential (ERP) component called the processing negativity (PN). PN has been proposed to indicate a matching or comparison process between the physical features of the stimulus and an ‘attentional trace’, an actively formed and maintained temporary neuronal representation of the features defining the relevant stimuli. According to this theory, the smaller is the difference between the eliciting stimulus and that represented by the attentional trace, the longer time is the stimulus processed, and thus the larger in amplitude and longer in duration is the PN elicited. The relevant stimuli, perfectly matching with the attentional trace, and therefore eliciting the largest and longest-duration PN, are selected for further processing. In the present study, the relevant and irrelevant stimuli differed in pitch, and the magnitude of this pitch separation was varied between different stimulus blocks. The results support the afore-mentioned matching or comparison hypothesis of selective attention by showing that PN is not elicited only by the relevant stimuli but even by irrelevant stimuli, and further that the latter PN is larger in amplitude and longer in duration the more similar the irrelevant stimuli are to the relevant stimuli. This PN, however, was smaller than that to the relevant stimuli even for very small separations, reflecting high accuracy of the discrimination function of the attentional trace mechanism proposed to underly selective listening. The termination of the PN to the irrelevant stimuli was followed by a positivity which thus partly explained the difference (Nd) between the ERPs to the relevant and irrelevant stimuli.  相似文献   

17.
18.
 Movement-related potentials (MRPs) recorded from the brain may be affected by several factors. These include the how well the subject knows the task and the load against which he performs it. The objective of this study is to determine how dominant these two factors are in influencing the shape and power of MRPs. MRPs were recorded during performance of a simple motor task that required learning of a force. A stochastic algorithm was used in order to partition a set of MRPs that are embedded in the surrounding electroencephalographic (EEG) activity into distinct classes according to the power of the underlying MRPs. Our results show that the most influential factor in the partition was the load against which the subject performed the task. Furthermore, it was found that learning has a smaller, though not insignificant, influence on the power of the MRPs. Received: 27 December 2000 / Accepted in revised form: 26 April 2001  相似文献   

19.
20.
The purpose of the present study was to evaluate olfactory event-related potentials (OERPs) elicited by amyl acetate from subjects performing a visuomotor tracking task compared with the no-task conditions of eyes open and eyes closed. Task condition did not produce any reliable effects for any amplitude measure. Task type weakly influenced only P2 latency. Elder adults evinced smaller P2 and N1/P2 amplitudes and longer N1 and P2 latencies than young adults. The results suggest that tracking task performance is not necessary to obtain robust OERPs from normal subjects of a wide age range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号