首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨GLP-1类似物艾塞那肽(exenatide)对链脲佐菌素诱导的糖尿病大鼠肾脏的保护作用。方法:SD大鼠随机分为正常组(NC组,n=8)和模型组;模型组给予高脂高糖饲料,喂养4周后腹腔注射STZ(30 mg·kg-1)建模,72 h后以血糖≥ 16.7 mmol·L-1为糖尿病成模标准,将成模大鼠随机分为糖尿病对照组(DM组,n=10)、3 μg·kg-1艾塞那肽干预(Ex-1)组和6μg·kg-1艾塞那肽干预(Ex-2)组;艾塞那肽组连续皮下注射艾塞那肽(bid)12周,NC组和DM组注射等容积溶剂;测定各组大鼠糖脂代谢变化和肾功能指标如血肌酐(Scr)、尿肌酐(Ucr)、尿素氮(BUN)、24 h尿微量白蛋白排出率(24 h UMA)并计算肌酐清除率(Ccr);测定肾组织氧化应激指标超氧化物歧化酶(SOD)、丙二醛(MDA)和谷胱甘肽过氧化物酶(GSH-Px);HE染色观察肾组织病理形态及ELISA法测定肾组织糖基化终末产物AGEs水平。结果:与糖尿病组相比,艾塞那肽可明显改善糖尿病大鼠糖脂代谢,血糖、糖基化血红蛋白(HbAlc)、甘油三脂及胆固醇值均下降(P < 0.05),肾功能指标明显好转(P < 0.05)且肌酐清除率下降(P < 0.05),提示肾小球高滤过状态;同时改善糖尿病引起的肾组织病理结构改变,AGEs浓度下降(P < 0.05),氧化应激指标SOD和GSH-Px活力升高,MDA含量降低(P < 0.05)。结论:艾塞那肽具有肾脏保护作用,其机制可能与抑制糖尿病大鼠肾组织的AGEs生成和改善氧化应激有关。  相似文献   

2.
Lithium carbonate used in the long-term treatment of manic-depressive illness has been reported to lead to progressive renal impairment in rats and humans. Caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, protects tissues from reactive oxygene species mediated oxidative stress in ischemia-reperfusion and toxic injuries. The beneficial effect CAPE on lithium-induced nephrotoxicity has not been reported yet. The purpose of this study was to examine a possible renoprotective effect of CAPE against lithium-induced nephrotoxicity in a rat model. Twenty-two adult male rats were randomly divided into three experimental groups, as follows: control group, lithium-treated group (Li), and lithium plus CAPE-treated group (Li+CAPE). Li were treated intraperitoneally (i.p.) with 25 mg/kg Li2CO3 solution in 0.9% NaCl twice daily for 4 weeks. CAPE was co-administered i.p. with a dose of 10 μM/kg/day for 4 weeks. Serum Li, blood urea nitrogen and plasma creatinine, urinary N-acetyl-β-D-glucosaminidase (NAG, a marker of renal tubular injury), and malondialdehyde (MDA, an index of lipid peroxidation), were used as markers of oxidative stress-induced renal impairment in Li-treated rats. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in renal tissue. Serum Li levels were found high in the Li and Li+CAPE groups. In Li-administrated rats, urinary NAG and renal MDA levels were increased according to control and Li+CAPE groups (p < 0.05). CAPE caused a significant reduction in the levels of these parameters. Likewise, renal SOD, CAT and GSH-Px activities were decreased in Li-administrated animals; CAPE caused a significant increase in the activities of these antioxidant enzymes. In conclusion, CAPE treatment has a protective effect against Li-induced renal tubular damage and oxidative stress in a rat model.  相似文献   

3.
Fructose has been reported as a potent agent in forming advanced glycation end products (AGEs) and, thus, may play a significant role in the pathogenesis of diabetic complications. Herein, we determined the effects of aminoguanidine (AG), an inhibitor of AGEs, on the mechanical properties of the arterial system in fructose-fed (FF) rats, using aortic impedance analysis. Rats at 2 months were given 10% fructose in drinking water for 2 weeks and compared with untreated age-matched controls. Meanwhile, FF rats were treated for 2 weeks with AG (daily peritoneal injections of 50 mg kg(-1)) and compared with the untreated FF group. Neither fructose nor AG affects body weight, blood glucose level, and basal heart rate. In comparison with controls, FF rats showed a decrease in cardiac output in the absence of any significant changes in mean aortic pressure, having increased total peripheral resistance (R(p)), at 51.1 +/- 2.9 versus 66.2 +/- 1.9 mm Hg sec ml(-1) (P < 0.05). Fructose also contributed to an increase in aortic characteristic impedance (Z(c)), from 1.528 +/- 0.094 to 1.933 +/- 0.084 mm Hg sec ml (-1) (P < 0.05) and a decrease in wave transit time (tau), from 22.6 +/- 0.6 to 19.2 +/- 0.7 msec (P < 0.05). The elevated Z(c) and the reduced tau suggest that fructose may cause a detriment to the aortic distensibility in animals. After exposure to AG, FF rats exhibited a significant improvement in physical properties of the resistance vessels, as evidenced by the reduction of 21.3% in R(p). Meanwhile, AG retarded the fructose-induced decline in aortic distensibility, as reflected in the decrease of 16.0% in Z(c) (P < 0.05) and the increase of 18.1% in tau (P < 0.05). By contrast, AG exerted no effects on the mechanical properties of Windkessel vessels, as well as resistance vessels, in normal diet controls. We conclude that AG may prevent the fructose-derived changes in arterial stiffening, possibly through inhibition of the fructose-derived advanced glycation end product formation in Wistar rats.  相似文献   

4.
Rhabdomyolysis (RM) caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney. Extracellular Mb is a pro-oxidant. This study tested whether supplementation with tert-butyl-bisphenol (BP) or vitamin E (Vit E, as α-tocopherol) at 0.12% w/w in the diet inhibits acute renal failure (ARF) in an animal model of RM. After RM-induction in rats, creatinine clearance decreased (p < 0.01), proteinuria increased (p < 0.001) and renal-tubule damage was detected. Accompanying ARF, biomarkers of oxidative stress (lipid oxidation and hemeoxygenase-1 (HO-1) gene and protein activity) increased in the kidney (p < 0.05). Supplemented BP or Vit E decreased lipid oxidation (p < 0.05) and HO-1 gene/activity and restored aortic cyclic guanylyl monophosphate in control animals (p < 0.001), yet ARF was unaffected. Antioxidant supplementation inhibited oxidative stress, yet was unable to ameliorate ARF in this animal model indicating that oxidative stress in kidney and vascular cells may not be causally related to renal dysfunction elicited by RM.  相似文献   

5.
Previous studies have demonstrated that exercise stress increases oxidative stress in rats. However, antioxidant supplement therapy effects on reactive oxygen substances are conflicting. We evaluated the effects of carnitine on renal nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. Wistar rats were divided into 3 groups: (a) control group (not submitted to exercise stress), (b) exercise stress group, and (c) exercise stress and carnitine group. The rats from group 3 were treated with gavage administration of 1 ml of carnitine (5 mg·kg?1) for 7 consecutive days. The animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for reactive substances to thiobarbituric acid by malondialdehyde (MDA), reduced glutathione (GSH), and vitamin-E levels. Carnitine treatment attenuated MDA increase caused by exercise stress (1: 0.16 ± 0.02 vs. 2: 0.34 ± 0.07 vs. 3: 0.1 ± 0.01 mmmol per milligram of protein; p < 0.0001). It also increased the renal levels of GSH (1: 23 ± 4 vs. 2: 23 ± 2 vs. 3: 58 ± 9 μmol per gram of protein; p < 0.0001); however, it did not change renal vitamin E (1: 24 ± 5 vs. 2: 27 ± 1 vs. 3: 28 ± 5 μM per gram of tissue; p < 0.001). In conclusion, carnitine improved oxidative stress and partially improved the nonenzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.  相似文献   

6.
Aortic stiffness is thought to affect coronary blood flow, but little is known about its influence on coronary flow reserve (CFR). The objective of the present study was to investigate the relationship between aortic stiffness and CFR in matched patients with and without increased aortic stiffness. Stress transoesophageal echocardiography (TEE) as the CFR measurement and coronary angiography were performed in all cases. Increased aortic stiffness was defined if elastic modulus Ep > 680 mmHg. The following patient populations free of coronary artery disease were compared: 36 subjects with normal aortic distensibility and 19 age-, sex-, and risk factor-matched patients with increased aortic stiffness. CFR was significantly reduced in patients with increased aortic stiffness as compared with cases with normal aortic distensibility (2.64 +/- 1.16 vs. 2.12 +/- 0.58, p <0.01). Hyperaemic diastolic flow velocities were reduced in patients with increased aortic stiffness (129.5 +/- 36.6 cm/s vs. 102.1 +/- 39.8 cm/s, p <0.05). Negative correlations were found between Ep and hyperaemic diastolic coronary flow velocity (r = -0.41, p < 0.01) and CFR (r = -0.21, p < 0.05). CFR is reduced in patients with increased aortic stiffness and negative correlations exist between these functional parameters.  相似文献   

7.
Chronic renal failure (CRF) is associated with oxidative stress that promotes production of reactive oxygen species and cytokine release. We aimed to investigate the possible protective effect of montelukast, a CysLT1 receptor antagonist, against oxidative damage in a rat model of CRF, induced by 5/6 reduction of renal mass. Male Wistar albino rats were randomly assigned to either the CRF group or the sham-operated control group, which received saline or montelukast (10mg/kg, i.p.) for 4 weeks. At the end of the 4 weeks, rats were decapitated and trunk blood was collected. Creatinine, blood urea nitrogen and lactate dehydrogenase (LDH) activity were measured in the serum samples, while leukotriene B(4), TNF-alpha, IL-1 beta, IL-6, total antioxidant capacity (AOC) and leukocyte apoptosis were assayed in plasma samples. Kidney, lung, heart and brain tissue samples were taken for the determination of tissue malondialdehyde (MDA), glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Oxidant-induced tissue fibrosis was determined by tissue collagen contents, and the extent of tissue injuries was analyzed microscopically. CRF caused significant decreases in tissue GSH and plasma AOC, which were accompanied with significant increases in MDA levels, MPO activities, and collagen contents of all the studied tissues, while the circulating levels of the pro-inflammatory mediators, LDH activity, creatinine and BUN were elevated. Montelukast treatment reversed all these biochemical indices, as well as histopathological alterations induced by CRF. Similarly, flow cytometric measurements revealed that leukocyte apoptosis was increased in CRF group, while montelukast reversed this effect. In conclusion, CRF-induced oxidative tissue injury occurs via the activation of pro-inflammatory mediators and by neutrophil infiltration into tissues, and that protective effects of montelukast on CRF-induced injury can be attributed to its ability to inhibit neutrophil infiltration and apoptosis, to balance oxidant-antioxidant status and to regulate the generation of pro-inflammatory mediators.  相似文献   

8.
To evaluate chronic ethanol toxicity on erythrocyte membrane and preventive action of betaine as a methyl donor, 24 male Wistar albino rats were divided into three groups: control, ethanol and ethanol plus betaine group. Animals were fed 60 ml diet per day for two months. Rats in the ethanol group were fed ethanol 8 g/kg/day. The ethanol + betaine groups were fed ethanol plus betaine (0.5% w/v). After two months, all animals were killed. Malondialdehyde (MDA) and sialic acid (SA) levels were determined in plasma samples. Osmotic fragility tests were performed on whole blood samples and erythrocyte membrane thiol contents were determined using membrane suspensions. Plasma MDA levels in ethanol-given rats were increased significantly compared to the control group of rats (p < 0.05). MDA in the betaine group was significantly lower than that in the ethanol group (p < 0.05). Erythrocyte membrane thiol contents in ethanol group were decreased compared with those of the control group (p < 0.05). Thiol contents were increased slightly after betaine therapy, but this increase was not statistically significant (p > 0.05). Plasma sialic acid levels in the ethanol group were significantly higher than in the control group (p < 0.05). Sialic acid was decreased in the betaine group compared to the ethanol group (p < 0.05). In the osmotic fragility test, we observed that chronic ethanol consumption increased erythrocyte hemolysis. Betaine protected against ethanol-induced hemolysis. Our findings show that chronic ethanol administration affects erythrocyte membrane properties and this may be related to oxidative stress. Betaine protects erythrocyte membrane alterations against chronic ethanol toxicity. Therefore betaine as a nutritional agent, may protect ethanol induced clinical problems associated with membrane abnormalities.  相似文献   

9.
Oxidative stress accompanies angiotensin (ANG) II infusion, but the role of ANG type 1 vs. type 2 receptors (AT1-R and AT2-R, respectively) is unknown. We infused ANG II subcutaneously in rats for 1 wk. Excretion of 8-isoprostaglandin F2alpha (8-Iso) and malonyldialdehyde (MDA) were related to renal cortical mRNA abundance for subunits of NADPH oxidase and superoxide dismutases (SODs) using real-time PCR. Subsets of ANG II-infused rats were given the AT1-R antagonist candesartan cilexetil (Cand) or the AT2-R antagonist PD-123,319 (PD). Compared to vehicle (Veh), ANG II increased 8-Iso excretion by 41% (Veh, 5.4 +/- 0.8 vs. ANG II, 7.6 +/- 0.5 pg/24 h; P < 0.05). This was prevented by Cand (5.6 +/- 0.5 pg/24 h; P < 0.05) and increased by PD (15.8 +/- 2.0 pg/24 h; P < 0.005). There were similar changes in MDA excretion. Compared to Veh, ANG II significantly (P < 0.005) increased the renal cortical mRNA expression of p22phox (twofold), Nox-1 (2.6-fold), and Mn-SOD (1.5-fold) and decreased expression of Nox-4 (2.1-fold) and extracellular (EC)-SOD (2.1-fold). Cand prevented all of these changes except for the increase in Mn-SOD. PD accentuated changes in p22phox and Nox-1 and increased p67phox. We conclude that ANG II infusion stimulates oxidative stress via AT1-R, which increases the renal cortical mRNA expression of p22phox and Nox-1 and reduces abundance of Nox-4 and EC-SOD. This is offset by strong protective effects of AT2-R, which are accompanied by decreased expression of p22phox, Nox-1, and p67phox.  相似文献   

10.
In recent years, the role of endothelial dysfunction (ED) and excessive oxidative stress in the development of cardiovascular diseases has been highlighted. The aim of the present study is to evaluate the effect of diosgenin, an antioxidant on chronic renal failure (CRF) induced vascular dysfunction. CRF was induced by feeding the rats with a diet containing 0.75 % adenine and diosgenin was given orally (everyday at the dose of 40 mg/kg). Isometric force measurement was performed on isolated aortic rings in organ baths. Levels of reduced glutathione (GSH), nitric oxide metabolites, and endothelial nitric oxide synthase mRNA in rat aorta were examined. Further, plasma lipid profile, activity of enzymes of lipid metabolism, and aortic angiotensin converting enzyme (ACE) also studied. The overall results have proved that diosgenin attenuates CRF-induced impairment in acetylcholine induced endothelium-dependent and sodium nitroprusside induced endothelium-independent vascular relaxation. Moreover, it elevates the GSH and restores the eNOS mRNA expression level. CRF-induced dyslipidemia and ACE activity was also inhibited by diosgenin treatment. This study indicates that diosgenin have enough potential to protect vasculature against oxidative stress, dyslipidemia which in turn improves the vascular function in CRF milieu.  相似文献   

11.
Endothelial dysfunction and increased arterial stiffness contribute to multiple vascular diseases and are hallmarks of cardiovascular aging. To investigate the effects of aging on shear stress-induced endothelial nitric oxide (NO) signaling and aortic stiffness, we studied young (3-4 mo) and old (22-24 mo) rats in vivo and in vitro. Old rat aorta demonstrated impaired vasorelaxation to acetylcholine and sphingosine 1-phosphate, while responses to sodium nitroprusside were similar to those in young aorta. In a customized flow chamber, aortic sections preincubated with the NO-sensitive dye, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, were subjected to steady-state flow with shear stress increase from 0.4 to 6.4 dyn/cm(2). In young aorta, this shear step amplified 4-amino-5-methylamino-2',7'-difluorofluorescein fluorescence rate by 70.6 +/- 13.9%, while the old aorta response was significantly attenuated (23.6 +/- 11.3%, P < 0.05). Endothelial NO synthase (eNOS) inhibition, by N(G)-monomethyl-l-arginine, abolished any fluorescence rate increase. Furthermore, impaired NO production was associated with a significant reduction of the phosphorylated-Akt-to-total-Akt ratio in aged aorta (P < 0.05). Correspondingly, the phosphorylated-to-total-eNOS ratio in aged aortic endothelium was markedly lower than in young endothelium (P < 0.001). Lastly, pulse wave velocity, an in vivo measure of vascular stiffness, in old rats (5.99 +/- 0.191 m/s) and in N(omega)-nitro-l-arginine methyl ester-treated rats (4.96 +/- 0.118 m/s) was significantly greater than that in young rats (3.64 +/- 0.068 m/s, P < 0.001). Similarly, eNOS-knockout mice demonstrated higher pulse wave velocity than wild-type mice (P < 0.001). Thus impaired Akt-dependent NO synthase activation is a potential mechanism for decreased NO bioavailability and endothelial dysfunction, which likely contributes to age-associated vascular stiffness.  相似文献   

12.
To determine the mechanism(s) underlying enhanced oxidative stress in kidneys of salt-sensitive hypertension, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second days of life. After being weaned, male rats were assigned into four groups and treated for 2 wk with the following: vehicle + a normal sodium diet (NS, 0.4%, CON-NS), vehicle + a high-sodium diet (HS, 4%, CON-HS), CAP + NS (CAP-NS), and CAP + HS (CAP-HS). Systolic blood pressure was significantly increased in CAP-HS but not CAP-NS or CON-HS rats. Plasma and urinary 8-iso-prostaglandin F(2alpha) levels increased by approximately 40% in CON-HS and CAP-HS rats compared with their respective controls fed a NS diet (P < 0.05), and these parameters were higher in CAP-HS compared with CON-HS rats. Superoxide (O(2)(-)*) levels in the renal cortex and medulla increased by approximately 45% in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). Enhanced O(2)(-)* levels in the cortex and medulla in CAP-HS rats were prevented by preincubation of renal tissues with apocynin, a selective NAD(P)H oxidase inhibitor. Protein expression of NAD(P)H oxidase subunits, including p47(phox) and gp91(phox) in the renal cortex and medulla, was significantly increased in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats. In contrast, protein expression and activities of Cu/Zn SOD and Mn SOD were significantly increased in the renal medulla in both CAP-HS and CON-HS but in the cortex in CAP-HS rats only. Creatinine clearance decreased by approximately 45% in CAP-HS rats compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). O(2)(-)* levels in the renal cortex of CAP-HS rats negatively correlated with creatinine clearance (r = -0.76; P < 0.001). Therefore, regardless of enhanced SOD activity to suppress oxidative stress, increased oxidative stress in the kidney of CAP-treated rats fed a HS diet is likely the result of increased expression and activities of NAD(P)H oxidase, which may contribute to decreased renal function and increased blood pressure in these rats. Our results suggest that sensory nerves may play a compensatory role in attenuating renal oxidative stress during HS intake.  相似文献   

13.
Effect of leptin on renal ischemia-reperfusion damage in rats   总被引:4,自引:0,他引:4  
Tumor necrosis factor-alpha (TNF-alpha) has been established as an important mediator in renal ischemia-reperfusion (I/R) injury. Leptin, a product of the ob gene, has been known to exhibit cytoprotective effects on renal tissue, but its effect on renal tissue TNF-alpha level after renal I/R injury in rats remains unknown. The purpose of the study was to evaluate the effects of leptin on renal tissue TNF-alpha, malondialdehyde (MDA), protein carbonyls (PCs) and total sulfydryl group (SH) levels, and plasma nitrite levels after renal I/R injury in rats. The animals were divided into three groups: control, I/R and I/R+leptin. Rats were subjected to renal ischemia by clamping the left pedicle for 45 min, and then reperfused for 1 h. The I/R+leptin group was pretreated intraperitoneally with leptin (10 microg/kg) 30 min before the induction of ischemia. Our results indicate that MDA, TNF-alpha levels, and PCs were significantly higher in the I/R group than those in the control group (p < 0.05). The administration of leptin decreased these parameters (p < 0.05) significantly. The SH level was observed to significantly decrease after I/R injury when compared to the control group (p < 0.05). Leptin treatment significantly increased tissue SH and plasma nitrite levels when compared to the I/R group (p < 0.05). Plasma nitrite levels did not change significantly in I/R when compared to the control. These results suggest that leptin could exert a protective effect on I/R induced renal damage by decreasing TNF-alpha levels and increasing nitrite level.  相似文献   

14.
目的:探讨替米沙坦及吡哆胺对自发性高血压大鼠脑组织氧化应激的影响。方法:自发性高血压大鼠24只随机分为4组(n=6):高血压对照组(HC组);替米沙坦组(T组);吡哆胺组(P组);联合治疗组(TP组)。同龄WKY大鼠作为正常对照组(NC组)。药物干预16周,测定各组脑组织中丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶p47phox mRNA表达。结果:与NC组比较,HC组脑组织中MDA含量明显升高、SOD活性明显减低(P<0.05);与HC组比较T组、P组、TP组MDA含量明显减低,SOD活性明显升高(P<0.05);与NC组比较HC组(NADPH)氧化酶p47phox mRNA表达显著上调(P<0.01);与HC组比较T组、TP组NADPH氧化酶p47phox mRNA表达明显下调(P<0.01);HC组与P组比较NADPH氧化酶p47phox mRNA表达无统计学差异(P>0.05)。结论:自发性高血压大鼠脑组织处于氧化应激状态,替米沙坦及吡哆胺可抑制自发性高血压大鼠脑组织的氧化应激水平,联合治疗并不优于替米沙坦单药治疗。  相似文献   

15.
The efficacy of Withania somnifera (Ws) to limit myocardial injury after ischemia and reperfusion was explored and compared to that of Vit E, a reference standard known to reduce mortality and infarct size due to myocardial infarction. Wistar rats (150-200 g) were divided into six groups and received orally saline (sham, control group), Ws-50/kg (Ws control and treated group) and Vit E-100 mg/kg (Vit E control and treated group) respectively for 1 month. On the 31st day, rats of the control, Vit E and Ws treated groups were anesthetized and subjected to 45 min occlusion of the LAD coronary artery followed by 60 min reperfusion. Hemodynamic parameters: systolic, diastolic and mean arterial pressure (SAP, DAP, MAP), heart rate (HR), left ventricular end diastolic pressure (LVEDP), left ventricular peak (+)LVdP/dt and (-)LVdP/dt were monitored. Hearts were removed and processed for histopathological and biochemical studies: Myocardial enzyme viz, creatin phosphokinase (CPK), and antioxidant parameters: malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx) were estimated. Postischemic reperfusion produced significant cardiac necrosis, depression of left ventricular functions (MAP, LVEDP, (+) and (-)LVdP/dt) and a significant fall in GSH (p < 0.01), SOD, CAT (p < 0.05), LDH and CPK (p < 0.01) as well as an increase in MDA level (p < 0.05) in the control group rats as compared to sham group. The changes in levels of protein and GPx was however, not significant. Ws and Vit E favorably modulated most of the hemodynamic, biochemical and histopathological parameters though no significant restoration in GSH, MAP (with Vit E) were observed. Ws on chronic administration markedly augmented antioxidants (GSH, GSHPx, SOD, CAT) while Vit E did not stimulate the synthesis of endogenous antioxidants compared to sham. Results indicate that Ws significantly reduced myocardial injury and emphasize the beneficial action of Ws as a cardioprotective agent.  相似文献   

16.
Abstact Cadmium is one of the most toxic pollutants in environment. Cadmium accumulation in blood affects the renal cortex and causes renal failure. In this study, we aimed to evaluate the effects of cadmium on rat liver tissue. Eighteen male albino rats aged ten weeks old were used in the study. 15 ppm of cadmium was administered to rats via consumption water daily. At the end of the 30th study day, the animals were killed under ether anesthesia. After the liver tissue samples were taken, histopathological and biochemical examinations were performed. Histopathologic changes have included vacuolar and granular degenerations in hepatocytes, heterochromatic nucleuses and sinusoidal and portal widenings. Central vein diameters were normal in cadmium exposed group. Whereas, there was statistically significant difference between two groups by means of sinusoidal (p< 0.001) and portal triad diameters (p< 0.01). Malondialdehyde (MDA) is an indicator of lipid peroxidation. In this study, MDA was used as a marker of oxidative stress-induced liver impairment in cadmium exposed rats. Superoxide dismutase (SOD) and catalase (CAT) activities were also measured to evaluate the changes in antioxidative system in liver tissues. Current findings showed that MDA levels were increased and SOD and CAT activities were decreased in cadmium exposed group compared to control group. The difference between two groups was statistically significant (pvalues: MDA,p< 0.01; CAT,p< 0.01 and SOD,p< 0.05). In conclusion, these findings suggest the role of oxidative mechanisms in cadmium-induced liver tissue damage  相似文献   

17.
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties.  相似文献   

18.
AIMS: To compare plasma adiponectin levels between healthy controls and patients with chronic renal failure and to examine for a relationship between plasma adiponectin levels and ischemic heart disease as well as aortic distensibility which is an early marker of atherosclerosis. METHODS: We included 89 patients with CRF (45 on and 44 not on hemodialysis) and 70 controls in a cross-sectional study. Plasma adiponectin levels were measured by radioimmunoassay. Aortic distensibility was assessed by high-resolution ultrasonography. RESULTS: Plasma adiponectin levels were significantly almost twice as high in patients with renal failure compared to controls (9.7 +/- 1.1 vs. 5.4 +/- 0.6 microg/ml, p < 0.0001). No significant differences were found between renal patients on hemodialysis and not on hemodialysis (p = 0.71). Multivariate linear regression analysis in the renal patient group demonstrated a significant negative relationship between plasma adiponectin levels and ischemic heart disease (p = 0.02). The same analysis in the control subjects group showed a significant, negative relationship between plasma adiponectin levels and body mass index (p = 0.02) and a highly significant positive relationship with the high density lipoprotein cholesterol (p < 0.0001). In the total study population, glomerular filtration rate was the only independent predictor of plasma adiponectin concentrations. Aortic distensibility was lower in renal patients than in controls at a high level of significance (p < 0.0001). However, no significant relationship could be found between plasma adiponectin and aortic distensibility in either the controls or the renal patients. CONCLUSIONS: Plasma adiponectin levels are almost twice as high in patients with chronic renal failure in comparison with healthy controls, but not different between renal patients on and those not on hemodialysis. In addition, low plasma adiponectin levels are strongly associated with ischemic heart disease, but not with aortic distensibility in chronic renal failure.  相似文献   

19.
To investigate ANP gene expression in diseased hearts of animals without genetic defects, immunoreactive ANP (IR-ANP) and ANP mRNA were measured in a rat with aortic valve insufficiency (AI), which was produced by puncturing one of the aortic valve leaflets with a plastic rod. Plasma IR-ANP concentration was higher in AI rats than in sham rats (p less than 0.05). Decreased atrial concentration of IR-ANP (p less than 0.05) and unchanged atrial ANP mRNA concentration were shown in AI rats. The ventricular concentrations of IR-ANP and ANP mRNA in AI rats were 5.4 and 2.4 times higher than those in sham rats (p less than 0.05, respectively). These results demonstrate that gene expression of ventricular ANP is markedly increased in AI rats while that of atrial ANP is not changed.  相似文献   

20.
BACKGROUND: Reactive glucose-protein intermediates and advanced glycation endproducts (AGEs) are shown to colocalize with atheromatous lesions and to trigger complex chemical and biological responses through interaction with vessel wall elements. In diabetes and renal insufficiency, atherosclerosis is common, as are elevated levels of serum and vascular tissue AGEs. In the present study, AGEs supplied exogenously to normal animals elicited vascular and renal pathology. MATERIALS AND METHODS: Nondiabetic rabbits were injected intravenously with low doses of AGE-modified rabbit serum albumin (AGE-RSA, 16 mg/kg/day) for 4 months alone, or combined with a brief terminal period (2 weeks) of a cholesterol-rich diet (CRD) (2% cholesterol, 10% corn oil). AGE-RSA associated expression of vascular cell adhesion molecules and the development of atheromatous changes within the aorta were determined by immunohistology. RESULTS: The AGE content of aortic tissue increased by 2.2-fold in AGE-treated and by 3.2-fold in AGE + CRD-treated rabbits compared with normal saline-treated control rabbits (p < 0.025 and 0.001, respectively). Serum AGE levels in AGE groups rose up to 3-fold above the controls (p < 0.025 and p < 0.01). Ascending aortic sections from AGE-treated rabbits showed significant focal intimal proliferation, enhanced endothelial cell adhesion with infrequent intimal macrophages. oil-red-O staining lipid deposits and positive focal expression of vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), a pattern not observed in controls. These AGE-induced changes were markedly enhanced in animals cotreated with AGEs and a brief period of CRD. Lesions consisted of multifocal atheromas, containing foam cells, massive lipid droplets, and strong endothelial expression of VCAM-1 and ICAM-1 restricted to the affected areas. CONCLUSIONS: This study provides in vivo evidence for a causal relationship between chronic AGE accumulation and atherosclerosis independent of diabetic hyperglycemia, and suggests the utility of this animal model for the study of diabetic vascular disease in relation to glycation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号