首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 'Great American Interchange' (GAI) is recognized as having had a dramatic effect on biodiversity throughout the Neotropics. However, investigation of patterns in Neotropical avian biodiversity has generally been focused on South American taxa in the Amazon Basin, leaving the contribution of Central American taxa under-studied. More rigorous studies of lineages distributed across the entire Neotropics are needed to uncover phylogeographical patterns throughout the area, offering insights into mechanisms that contribute to overall Neotropical biodiversity. Here we use mitochondrial DNA sequence data and intensive geographical sampling from the widespread Neotropical avian genus Trogon to investigate the role of the GAI in shaping its phylogeographical history. Our results show that genetic diversity in Trogon exceeds the perceived biodiversity, and that the GAI resulted in lineage diversification within the genus. Despite greater diversity in South America, a Central American centre of origin with multiple and independent dispersals into South America is indicated. These dispersals were followed by the evolution of divergent lineages associated with the Andes Mountains and other South American geographical features. According to our phylogenetic reconstructions, several species, which were originally defined by morphological characters, are nonmonophyletic. In sum, our results elucidate the evolutionary history of Trogon , reveal patterns obscured by extant biodiversity, and serve as a biogeographical model to consider in future studies.  相似文献   

2.
Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil‐calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity‐dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae.  相似文献   

3.
The Neotropics contains half of remaining rainforests and Earth's largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Chocó resulted from repeated immigrations, with radiations at <10.0 million years ago (MYA), rather than in situ diversification. In contrast, the Andes, Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved.  相似文献   

4.
Bumble bees (Bombus) are a cold-adapted, largely alpine group that can elucidate patterns of Holarctic historical biogeography, particularly in comparison to the alpine plants with which they likely coevolved. A recently published molecular phylogeny of bumble bees provides uniquely comprehensive species sampling for exploring historical patterns of distribution and diversification. Using this phylogeny and detailed data on extant distributions, I reconstruct the historical distribution of bumble bees in a temporal framework, estimating divergence times using fossil data and molecular rates derived from the literature. The nearly comprehensive phylogeny allows assessment of the tempo of diversification within the bumble bees using lineage-through-time plots and diversification statistics, which have been performed with special consideration to confidence intervals. These analyses reveal movements of Bombus concordant with geographic and climatic events of the late Cenozoic. The initial diversification of extant bumble bee lineages was estimated at around 25 to 40 Ma, near the Eocene-Oligocene boundary 34 Ma, a period of dramatic global cooling. Dispersal-vicariance analysis (DIVA) predicted an Old World Bombus ancestor, with early diversification events largely restricted to the eastern Old World. The numerous intercontinental dispersal events occurred mostly in the direction of Old World to New World and North America to South America. Early movements from the Palearctic into the Nearctic most likely took place after 20 Ma and may have coincided with a period of Miocene cooling that gave rise to taiga habitat across Beringia. Subsequent dispersal between these regions is estimated to have occurred among boreal and tundra-adapted species mostly in the last 5 million years. Radiations are estimated in both Nearctic and Neotropical regions at approximately 6 to 8 Ma and after 3.5 Ma, concordant with the opening of land corridors between the continents.  相似文献   

5.
The Amazonia and the Atlantic Forest, separated by the diagonal of open formations, are two ecoregions that comprise the most diverse tropical forests in the world. The Sphaenorhynchini tribe is among the few tribes of anurans that occur in both rainforests, and their historical biogeographic have never been proposed. In this study, we infer a dated phylogeny for the species of the Sphaenorhynchini and we reconstructed the biogeographic history describing the diversification chronology, and possible patterns of dispersion and vicariance, providing information about how orogeny, forest dynamics and allopatric speciation affected their evolution in South America. We provided a dated phylogeny and biogeography study for the Sphaenorhynchini tribe using mitochondrial and nuclear genes. We analyzed 41 samples to estimate the ancestral areas using biogeographical analysis based on the estimated divergence times and the current geographical ranges of the species of Sphaenorhynchini. We recovered three characteristic clades that we recognize as groups of species (S. lacteus, S. planicola, and S. platycephalus groups), with S. carneus and G. pauloalvini being the sister taxa of all other species from the tribe. We found that the diversification of the tribe lineages coincided with the main climatic and geological factors that shaped the Neotropical landscape during the Cenozoic. The most recent common ancestor of the Sphaenorhynchini species emerged in the North of the Atlantic Forest and migrated to the Amazonia in different dispersion events that occurred during the connections between these ecoregions. This is the first large‐scale study to include an almost complete calibrated phylogeny of Sphaenorhynchini, presenting important information about the evolution and diversification of the tribe. Overall, we suggest that biogeographic historical of Sphaenorhynchini have resulted from a combination of repeated range expansion and contraction cycles concurrent with climate fluctuations and dispersal events between the Atlantic Forest and Amazonia.  相似文献   

6.
Several recent studies have suggested that a substantial portion of today's plant diversity in the Neotropics has resulted from the dispersal of taxa into that region rather than vicariance, but more data are needed to substantiate this claim. Guatteria (Annonaceae) is, with 265 species, the third largest genus of Neotropical trees after Inga (Fabaceae) and Ocotea (Lauraceae), and its widespread distribution and frequent occurrence makes the genus an excellent model taxon to study diversification patterns. This study reconstructed the phylogeny of Guatteria and inferred three major biogeographical events in the history of the genus: (1) a trans-oceanic Miocene migration from Central into South America before the closing of the Isthmus of Panama; (2) a major diversification of the lineage within South America; and (3) several migrations of South American lineages back into Central America via the closed Panamanian land bridge. Therefore, Guatteria is not an Amazonian centred-genus sensu Gentry but a major Miocene diversification that followed its dispersal into South America. This study provides further evidence that migration into the Neotropics was an important factor in the historical assembly of its biodiversity. Furthermore, it is shown that phylogenetic patterns are comparable to those found in Ocotea and Inga and that a closer comparison of these genera is desirable.  相似文献   

7.
The geological record of South American mammals is spatially biased because productive fossil sites are concentrated at high latitudes. As a result, the history of mammalian diversification in Amazonia and other tropical biomes is largely unknown. Here we report diversification analyses based on a time‐calibrated molecular phylogeny of opossums (Didelphidae), a species‐rich clade of mostly tropical marsupials descended from a Late Oligocene common ancestor. Optimizations of habitat and geography on this phylogeny suggest that (1) basal didelphid lineages inhabited South American moist forests; (2) didelphids did not diversify in dry‐forest habitats until the Late Miocene; and (3) most didelphid lineages did not enter North America until the Pliocene. We also summarize evidence for an Early‐ to Middle‐Miocene mass extinction event, for which alternative causal explanations are discussed. To the best of our knowledge, this study provides the first published molecular‐phylogenetic evidence for mass extinction in any animal clade, and it is the first time that evidence for such an event (in any plant or animal taxon) has been tested for statistical significance. Potentially falsifying observations that could help discriminate between the proposed alternative explanations for didelphid mass extinction may be obtainable from diversification analyses of other sympatric mammalian groups.  相似文献   

8.
Aim The family Rutaceae (rue family) is the largest within the eudicot order Sapindales and is distributed mainly in the tropical and subtropical regions of both the New World and the Old World, with a few genera in temperate zones. The main objective of this study is to present molecular dating and biogeographical analyses of the subfamily Spathelioideae, the earliest branching clade (which includes eight extant genera), to interpret the temporal and spatial origins of this group, ascertaining possible vicariant patterns and dispersal routes and inferring diversification rates through time. Location Pantropics. Methods A dataset comprising a complete taxon sampling at generic level (83.3% at species level) of Spathelioideae was used for a Bayesian molecular dating analysis (beast ). Four fossil calibration points and an age constraint for Sapindales were applied. An ancestral area reconstruction analysis utilizing the dispersal–extinction–cladogenesis model and diversification rate analyses was conducted. Results Dating analyses indicate that Rutaceae and Spathelioideae are probably of Late Cretaceous origin, after which Spathelioideae split into a Neotropical and a Palaeotropical lineage. The Palaeotropical taxa have their origin inferred in Africa, with postulated dispersal events to the Mediterranean, the Canary Islands, Madagascar and Southeast Asia. The lineages within Spathelioideae evolved at a relatively constant diversification rate. However, abrupt changes in diversification rates are inferred from the beginning of the Miocene and during the Pliocene/Pleistocene. Main conclusions The geographical origin of Spathelioideae probably lies in Africa. The existence of a Neotropical lineage may be the result of a dispersal event at a time in the Late Cretaceous when South America and Africa were still quite close to each other (assuming that our age estimates are close to the actual ages), or by Gondwanan vicariance (assuming that our age estimates provide minimal ages only). Separation of land masses caused by sea level changes during the Pliocene and Pleistocene may have been triggers for speciation in the Caribbean genus Spathelia.  相似文献   

9.
The hickory genus (Carya) contains ca. 17 species distributed in subtropical and tropical regions of eastern Asia and subtropical to temperate regions of eastern North America. Previously, the phylogenetic relationships between eastern Asian and eastern North American species of Carya were not fully confirmed even with an extensive sampling, biogeographic and diversification patterns had thus never been investigated in a phylogenetic context. We sampled 17 species of Carya and 15 species representing all other genera of the Juglandaceae as outgroups, with eight nuclear and plastid loci to reconstruct the phylogeny of Carya. The phylogenetic positions of seven extinct genera of the Juglandaceae were inferred using morphological characters and the molecular phylogeny as a backbone constraint. Divergence times within Carya were estimated with relaxed Bayesian dating. Biogeographic analyses were performed in DIVA and LAGRANGE. Diversification rates were inferred by LASER and APE packages. Our results support two major clades within Carya, corresponding to the lineages of eastern Asia and eastern North America. The split between the two disjunct clades is estimated to be 21.58 (95% HPD 11.07-35.51) Ma. Genus-level DIVA and LAGRANGE analyses incorporating both extant and extinct genera of the Juglandaceae suggested that Carya originated in North America, and migrated to Eurasia during the early Tertiary via the North Atlantic land bridge. Fragmentation of the distribution caused by global cooling in the late Tertiary resulted in the current disjunction. The diversification rate of hickories in eastern North America appeared to be higher than that in eastern Asia, which is ascribed to greater ecological opportunities, key morphological innovations, and polyploidy.  相似文献   

10.
The Yellow-headed Parrot ( Amazona ochrocephala ) has a broad Neotropical distribution, ranging from Mexico to the Amazon Basin, and a history of complex taxonomy and controversial species limits. Recent molecular analyses have started to clarify the taxonomic arrangement of the complex, but have not included a representative geographical sampling from South America. These studies have shown that the Yellow-headed complex can be divided into three main lineages, and seems to be paraphyletic, due to the inclusion of the Blue-fronted Parrot ( Amazona aestiva ) that occurs in central South America. Here we present a phylogenetic analysis based on mitochondrial DNA sequences of 45 representatives of the Yellow-headed complex from South and Central America, plus 13 Blue-fronted individuals from different localities in South America. Our analyses recover the three primary lineages found previously in the Yellow-headed complex, show that there is genetic structure in the South American lineage, which can be divided into two well-supported, closely related clades, and demonstrate that Blue-fronted samples are distributed in both clades. Differentiation of South American Blue-fronted and Yellow-headed Parrot populations does not correspond to the plumage differences used to distinguish the Blue-fronted Parrot from the Yellow-headed Parrot, nor to plumage differences used to distinguish among South American Yellow-headed subspecies. This suggests that traditional taxonomy based on plumage characters needs revision, and that this may be an interesting example of ongoing divergence-with-gene-flow related to the forest/open area ecotone in southern Amazonia.  相似文献   

11.
Becerra JX  Venable DL 《PloS one》2008,3(10):e3436
Elucidating the geographical history of diversification is critical for inferring where future diversification may occur and thus could be a valuable aid in determining conservation priorities. However, it has been difficult to recognize areas with a higher likelihood of promoting diversification. We reconstructed centres of origin of lineages and identified areas in the Mexican tropical dry forest that have been important centres of diversification (sources) and areas where species are maintained but where diversification is less likely to occur (diversity sinks). We used a molecular phylogeny of the genus Bursera, a dominant member of the forest, along with information on current species distributions. Results indicate that vast areas of the forest have historically functioned as diversity sinks, generating few or no extant Bursera lineages. Only a few areas have functioned as major engines of diversification. Long-term preservation of biodiversity may be promoted by incorporation of such knowledge in decision-making.  相似文献   

12.
Biotic interchange between geographic regions can promote rapid diversification. However, what are the important factors that determine the rate of diversification (e.g., trait‐dependent diversification) vary between study systems. The evolutionary history of Dynastes beetles, which can be found in both North and South Americas and exhibit two different altitudinal preferences (highland and lowland) is tested for the effects of biotic interchange between continents and different ecological preferences on the rate of species diversification. Additionally, the hypotheses of geological time‐dependent and lineage specific diversification rates are also tested. Results from this study indicate that in Dynastes beetles a pre‐landbridge dispersal hypothesis from South to North America is preferred and that the speciation rates estimated using BAMM are similar between lineages of different geographic origins and different altitudinal preferences (i.e., diversification rate is not trait‐dependent). On the other hand, my result from marcoevolutionary cohort analysis based on BAMM outputs suggests that the rate of speciation in Dynastes beetles is, instead of trait‐dependent (geographic and ecological), lineage specific. Furthermore, a steadily increasing speciation rate can be found in Pliocene and Pleistocene, which implies that geological and climatic events, i.e., colonizing North America, habitat reformation in the Amazonia, and forest contraction in Pleistocene, may have together shaped the current biodiversity pattern in Dynastes beetles.  相似文献   

13.
Aim In this study we present a molecular phylogenetic and phylogeographical analysis of Peltophryne (Anura: Bufonidae), an endemic genus of Antillean toads, to investigate the spatial and temporal origins of the genus, with particular focus on the eight Cuban species. Location Greater Antilles, with extensive sampling of the Cuban archipelago. Methods We obtained DNA sequence data from two mitochondrial genes, cytochrome c oxidase subunit I (COI) and ribosomal RNA (16S), for 124 toads representing all eight Cuban species, and combined this with published data from Hispaniola (one of three species) and Puerto Rico (one of one species) to establish a molecular phylogeny for Peltophryne. In addition, we explored the phylogeographical structure of widespread Cuban species. For a subset of 42 toads we also obtained DNA sequence data from two nuclear genes, recombination activator‐1 (RAG‐1) and chemokine receptor 4 (CXCR‐4). We combined our molecular data with published DNA sequences from a global sample of bufonid toads to place the spatial and temporal origins of Peltophryne in the Caribbean within a fuller geographical and phylogenetic context. Results All phylogenetic analyses supported the monophyly of West Indian toads. The ancestor of Peltophyrne diverged from its mainland source around the Eocene–Oligocene boundary, with a subsequent radiation across the Caribbean islands taking place during the Miocene. Cuban species are monophyletic with a basal split in the early–middle Miocene that separates extant small‐bodied from large‐bodied species. Extensive mitochondrial DNA (mtDNA) sampling within widespread Cuban species revealed contrasting phylogeographical patterns. Peltophryne taladai and P. empusa showed deeply divergent lineages, whereas no geographical structure was observed in the widespread P. peltocephala. Main conclusions Our timeline for Peltophryne diversification is consistent with a biogeographical model requiring no long‐distance overwater dispersal. Although confidence intervals on divergence time estimates are wide, the stem age of Peltophyrne coincides with the hypothesized GAARlandia landspan or archipelago, which may have connected South America briefly with the Antilles. The ages of Peltophryne for Puerto Rico, Hispaniola and Cuba are consistent with a recently proposed vicariance scenario for the region. Our molecular results support the recognition of all eight species in Cuba, and provide evidence of possible cryptic species.  相似文献   

14.
The extant distribution of sigmodontine rodents encompasses most of the New World, and the majority of the species in this subfamily inhabit South America. Nevertheless, the basal lineages of the Sigmodontinae are distributed in North and Central America, and the fossil record indicates a North American origin. This evidence has produced contentious theories concerning the evolution of these rodents. The dispute usually stems from a disagreement about the way in which sigmodontines reached South America, which was an isolated landmass during most of the Cenozoic. Fundamentally, the debate is associated with the role of Panamanian Isthmus formation and the Great American Biotic Interchange (GABI) in the diversification of the clade. An early hypothesis implies that sigmodontines arrived in South America before the complete rise of the Panamanian Isthmus, whereas a late hypothesis directly correlates the diversification of the lineage with this event. To address this question, we have sequenced nuclear and mitochondrial sequences, as well as the first Sigmodontinae mitochondrial genomes (Akodon montensis and Wiedomys cerradensis) and performed a Bayesian dating analysis. Our results showed that the most recent common ancestor of the subfamily lived at approximately 15 Ma. Although the diversification of sigmodontines was not associated with the complete rise of the Panamanian Isthmus, we cannot exclude the hypothesis that this event played a relevant role in the evolution of the lineage during the Miocene.  相似文献   

15.
Anopheles (Nyssorhynchus) nuneztovari Gabaldón (Diptera: Culicidae), a locally important malaria vector in some regions of South America, has been hypothesized to consist of at least two cryptic incipient species. We investigated its phylogeographic structure in several South American localities to determine the number of lineages and levels of divergence using the nuclear white gene, a marker that detected two recently diverged genotypes in the primary Neotropical malaria vector Anopheles darlingi Root. In An. nuneztovari, five distinct lineages (1-5) were elucidated: (1) populations from northeastern and central Amazonia; (2) populations from Venezuela east and west of the Andes; (3) populations from Colombia and Venezuela west of the Andes; (4) southeastern and western Amazonian Brazil populations, and (5) southeastern and western Amazonian Brazil and Bolivian populations. There was a large amount of genetic differentiation among these lineages. The deepest and earliest divergence was found between lineage 3 and lineages 1, 2 and 4, which probably accounts for the detection of lineage 3 in some earlier studies. The multiple lineages within Amazonia are partially congruent with previous mtDNA and ITS2 data, but were undetected in many earlier studies, probably because of their recent (Pleistocene) divergence and the differential mutation rates of the markers. The estimates for the five lineages, interpreted as recently evolved or incipient species, date to the Pleistocene and Pliocene. We hypothesize that the diversification in An. nuneztovari is the result of an interaction between the Miocene/Pliocene marine incursion and Pleistocene climatic changes leading to refugial isolation. The identification of cryptic lineages in An. nuneztovari could have a significant impact on local vector control measures.  相似文献   

16.
The Tropical Niche Conservatism hypothesis is a leading explanation for why biodiversity increases towards the equator. The model suggests that most lineages have tropical origins, with few dispersing into temperate regions. However, biotas are comprised of lineages with differing geographical origins, thus it is unclear whether lineages that originated on different continents will exhibit similar patterns of niche conservatism. Here, we summarised biogeographical patterns of New World vertebrates and compared species diversity patterns between families that originated in North and South America. Overall, families with southern origins exhibit niche conservatism with many lineages restricted to the Neotropics, whereas many northern‐origin families are distributed across the Neotropics and the Nearctic. Consequently, northern lineages have contributed to high tropical biodiversity, but southern lineages have contributed relatively little to temperate biodiversity in North America. The asymmetry in niche conservatism between northern and southern lineages is an important contributor to the biodiversity gradient.  相似文献   

17.
We focus on reconstructing a spatiotemporal scenario of diversification of a widespread South American species, the Pectoral Sparrow Arremon taciturnus (Aves: Passerellidae). This species is widely distributed in both the humid and the dry forests of South America and therefore provides an interesting model for understanding the connection between different biomes of South America. We examined nucleotide sequences of the mitochondrial genes Cytochrome b (cyt-b) and NADH subunit 2 (ND2) from 107 specimens, and one nuclear marker (intron 7 of the β-fibrinogen gene) from a subset of samples collected across the distribution ranges of A. t. taciturnus and A. t. nigrirostris. Six major lineages were recovered in the phylogenies that displayed high levels of variance of allele frequencies and corresponded to distinct geographical locations. The estimation of divergence times provided evidence that diversification of the six lineages of the Pectoral Sparrow occurred throughout the Late Pleistocene across major cis-Andean biomes and Amazonian interfluves. Our dataset for A. taciturnus provides further evidence that rivers in Amazonia constitute barriers promoting allopatric speciation, with occasional sharing of alleles among lineages, particularly those with adjacent distributions.  相似文献   

18.
The cosmopolitan family Porellaceae includes about 60 species in two or three genera: the large genus Porella and the monospecific Ascidiota and Macvicaria (alternatively Porella subg. Macvicaria). Maximum parsimony, maximum likelihood and Bayesian inference of phylogeny of a dataset including three markers (rbcL, trnL-trnF region of cp DNA, nrITS region) of 96 accessions resulted in similar topologies supporting the generic status of Ascidiota. Macvicaria is nested in a subclade of Porella. Relationships among species of Porella are in general well resolved and many terminal nodes achieve good statistical support whereas basal relationships are at best moderately supported. Multiple accessions of single species are usually placed in monophyletic lineages. Accessions of P. platyphylla split into a European and a North American clade with one accession from North America embedded within the European samples. The Macaronesian endemic P. inaequalis is closely related to the Asian species P. grandiloba. Porella obtusata and P. canariensis cannot be separated on the basis of the sequence data presented in this study. The molecular topologies indicate a range extension of the Asian P. gracillima subsp. urogea to Eastern North America and of the Neotropical P. swartziana to South Africa. Current supraspecific classifications of Porella are not reflected in the molecular topologies with a correlation between genetic variation and the geographical distribution of the related accessions rather than a correlation between genetic variation and morphology.  相似文献   

19.
The marine‐freshwater boundary is a major biodiversity gradient and few groups have colonised both systems successfully. Fishes have transitioned between habitats repeatedly, diversifying in rivers, lakes and oceans over evolutionary time. However, their history of habitat colonisation and diversification is unclear based on available fossil and phylogenetic data. We estimate ancestral habitats and diversification and transition rates using a large‐scale phylogeny of extant fish taxa and one containing a massive number of extinct species. Extant‐only phylogenetic analyses indicate freshwater ancestry, but inclusion of fossils reveal strong evidence of marine ancestry in lineages now restricted to freshwaters. Diversification and colonisation dynamics vary asymmetrically between habitats, as marine lineages colonise and flourish in rivers more frequently than the reverse. Our study highlights the importance of including fossils in comparative analyses, showing that freshwaters have played a role as refuges for ancient fish lineages, a signal erased by extinction in extant‐only phylogenies.  相似文献   

20.
? Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. ? Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. ? Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. ? The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号