首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional wisdom predicts that sequential founder events will cause genetic diversity to erode in species with expanding geographic ranges, limiting evolutionary potential at the range margin. Here, we show that invasive European starlings (Sturnus vulgaris) in South Africa preserve genetic diversity during range expansion, possibly as a result of frequent long‐distance dispersal events. We further show that unfavourable environmental conditions trigger enhanced dispersal, as indicated by signatures of selection detected across the expanding range. This brings genetic variation to the expansion front, counterbalancing the cumulative effects of sequential founding events and optimizing standing genetic diversity and thus evolutionary potential at range margins during spread. Therefore, dispersal strategies should be highlighted as key determinants of the ecological and evolutionary performances of species in novel environments and in response to global environmental change.  相似文献   

2.
Biological Invasions - Common myna (Acridotheres tristis) is a passerine bird native to south-east Asia, established as an alien in many parts of the world including South Africa, where it is...  相似文献   

3.
4.
To predict the spread of invasive species, we need to understand the mechanisms that underlie their range expansion. Assuming random diffusion through homogeneous environments, invasions are expected to progress at a constant rate. However, environmental heterogeneity is expected to alter diffusion rates, especially by slowing invasions as populations encounter suboptimal environmental conditions. Here, we examine how environmental and landscape factors affect the local invasion speeds of cane toads (Chaunus [Bufo] marinus) in Australia. Using high-resolution cane toad data, we demonstrate heterogeneous regional invasion dynamics that include both decelerating and accelerating range expansions. Toad invasion speed increased in regions characterized by high temperatures, heterogeneous topography, low elevations, dense road networks, and high patch connectivity. Regional increases in the toad invasion rate might be caused by environmental conditions that facilitate toad reproduction and movement, by the evolution of long-distance dispersal ability, or by some combination of these factors. In any case, theoretical predictions that neglect environmental influences on dispersal at multiple spatial scales may prove to be inaccurate. Early predictions of cane toad range expansion rates that assumed constant diffusion across homogeneous landscapes already have been proved wrong. Future attempts to predict range dynamics for invasive species should consider heterogeneity in (1) the environmental factors that determine dispersal rates and (2) the mobility of invasive populations because dispersal-relevant traits can evolve in exotic habitats. As an invasive species spreads, it is likely to encounter conditions that influence dispersal rates via one or both of these mechanisms.  相似文献   

5.
1. Evolutionary increases in dispersal‐related traits are frequently documented during range expansions. Investment in flight‐related traits is energetically costly and a trade‐off with fecundity may be expected during range expansion. 2. However, in contrast to wing‐dimorphic species, this trade‐off is not general in wing‐monomorphic species. In the absence of a dispersal‐‐fecundity trade‐off, an increased investment in clutch size at the expansion front is expected possibly at a cost of reduced offspring size. 3. The study evaluated investment in female flight morphology and fecundity‐related traits (clutch size, hatchling size) and potential trade‐offs among these traits in replicated populations of the poleward range‐expanding damselfly Coenagrion scitulum. 4. Females at the expansion front had a higher relative thorax length, indicating an increased investment in flight; this can be explained by spatial sorting of dispersal ability or in situ natural selection at the expansion front. Edge females produced larger hatchlings, however, this pattern was totally driven by the population‐specific thermal larval regimes and could not be attributed to the range expansion per se. By contrast, clutch sizes did not differ between core and edge populations. There was no signal of a dispersal–fecundity trade‐off either for a trade‐off between clutch size and hatchling size. 5. These results indicate that evolution of a higher dispersal ability at the expansion front of C. scitulum does not trade off with investment in fecundity, hence a dispersal–fecundity trade‐off is unlikely to slow down range expansion of this species.  相似文献   

6.
Range expansion results from complex eco‐evolutionary processes where range dynamics and niche shifts interact in a novel physical space and/or environment, with scale playing a major role. Obligate symbionts (i.e. organisms permanently living on hosts) differ from free‐living organisms in that they depend on strong biotic interactions with their hosts which alter their niche and spatial dynamics. A symbiotic lifestyle modifies organism–environment relationships across levels of organisation, from individuals to geographical ranges. These changes influence how symbionts experience colonisation and, by extension, range expansion. Here, we investigate the potential implications of a symbiotic lifestyle on range expansion capacity. We present a unified conceptual overview on range expansion of symbionts that integrates concepts grounded in niche and metapopulation theories. Overall, we explain how niche‐driven and dispersal‐driven processes govern symbiont range dynamics through their interaction across scales, from host switching to geographical range shifts. First, we describe a background framework for range dynamics based on metapopulation concepts applied to symbiont organisation levels. Then, we integrate metapopulation processes operating in the physical space with niche dynamics grounded in the environmental arena. For this purpose, we provide a definition of the biotope (i.e. living place) specific to symbionts as a hinge concept to link the physical and environmental spaces, wherein the biotope unit is a metapopulation patch (either a host individual or a land fragment). Further, we highlight the dual nature of the symbionts' niche, which is characterised by both host traits and the external environment, and define proper conceptual variants to provide a meaningful unification of niche, biotope and symbiont organisation levels. We also explore variation across systems in the relative relevance of both external environment and host traits to the symbiont's niche and their potential implications on range expansion. We describe in detail the potential mechanisms by which hosts, through their function as biotopes, could influence how some symbionts expand their range – depending on the life history and traits of both associates. From the spatial point of view, hosts can extend symbiont dispersal range via host‐mediated dispersal, although the requirement for among‐host dispersal can challenge symbiont range expansion. From the niche point of view, homeostatic properties of host bodies may allow symbiont populations to become insensitive to off‐host environmental gradients during host‐mediated dispersal. These two potential benefits of the symbiont–host interaction can enhance symbiont range expansion capacity. On the other hand, the central role of hosts governing the symbiont niche makes symbionts strongly dependent on the availability of suitable hosts. Thus, environmental, dispersal and biotic barriers faced by suitable hosts apply also to the symbiont, unless eventual opportunities for host switching allow the symbiont to expand its repertoire of suitable hosts (thus expanding its fundamental niche). Finally, symbionts can also improve their range expansion capacity through their impacts on hosts, via protecting their affiliated hosts from environmental harshness through biotic facilitation.  相似文献   

7.
Arnaud Monty  Grégory Mahy 《Oikos》2010,119(10):1563-1570
In introduced organisms, dispersal propensity is expected to increase during range expansion. This prediction is based on the assumption that phenotypic plasticity is low compared to genetic diversity, and an increase in dispersal can be counteracted by the Allee effect. Empirical evidence in support of these hypotheses is however lacking. The present study tested for evidence of differentiation in dispersal‐related traits and the Allee effect in the wind‐dispersed invasive Senecio inaequidens (Asteraceae). We collected capitula from individuals in ten field populations, along an invasion route including the original introduction site in southern France. In addition, we conducted a common garden experiment from field‐collected seeds and obtained capitula from individuals representing the same ten field populations. We analysed phenotypic variation in dispersal traits between field and common garden environments as a function of the distance between populations and the introduction site. Our results revealed low levels of phenotypic differentiation among populations. However, significant clinal variation in dispersal traits was demonstrated in common garden plants representing the invasion route. In field populations, similar trends in dispersal‐related traits and evidence of an Allee effect were not detected. In part, our results supported expectations of increased dispersal capacity with range expansion, and emphasized the contribution of phenotypic plasticity under natural conditions.  相似文献   

8.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

9.
Rapid range expansion of invasive plants provides a unique opportunity to explore evolutionary changes of dispersal‐related traits during the invasion process. Increasing evidence now suggests that a higher dispersal rate is favored at the invasion front. However, little is known about the role of genetic differentiation and phenotypic plasticity on patterns of dispersal ability during the invasion process. In this study, we combined a field survey and a common garden transplant experiment to test for evidence of genetically based dispersal ability in Mikania micrantha, a highly invasive vine, across its invaded range in southern China. Three dispersal‐related traits, plume loading, seed mass and pappus radius, were measured in both natural and common garden populations. We found that in natural conditions, plume loading and seed mass significantly decreased with expanding distance from the source population, but in controlled conditions, these two traits exhibited a significant humped trend against percent field cover, indicating that dispersal ability of M. micrantha was selected for during range expansion and that the related traits were likely to be under genetic control. Furthermore, rebounding dispersal ability was detected in highly competitive sites in the range core, which suggested that this evolutionary process was likely partially driven by intraspecific competition. Because more and more plant species are under spatial nonequilibirum due to climate change, this study can serve to provide hints at the fate of spatially fluctuant populations.  相似文献   

10.
Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern—local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation—not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male‐biased dispersal.  相似文献   

11.
Dispersal strategies are one of the most important determinants of range dynamics and a surrogate for invasiveness. We tested three inter‐related hypotheses derived from demographic and ecological models: (H1) short‐distance dispersal strategies arise at native range margins due to their demographic advantage; (H2) in non‐native areas a high diffusion rate is favoured at the advancing range front for niche filling; (H3) environmental deterioration can increase dispersal and lead to a ‘good–stay, bad–disperse’ strategy. Spatially and temporally explicit rates of spread and dispersal kernels of the European starling Sturnus vulgaris were generated for its native range (Britain) using ringing records from 1909 to 2008, and for a non‐native area (South Africa) using ringing data and distributional records since its introduction in 1897. There was a marked spatial and temporal variation in the rate of spread within both native and non‐native ranges. In the native range the rate of spread declined with increasing distance from the species’ European distribution (contradicting H1). In the non‐native range the rate of spread increased with distance from the introduction locality (supporting H2). The annual rate of spread in the native range also increased significantly when environmental conditions were deteriorating as indicated by marked population declines and relatively low abundance (H3), providing clear evidence for flexible dispersal strategies based on a ‘good–stay, bad–disperse’ rule. Starlings’ dispersal kernel followed an inverse power law and showed strong anisotropy and significant divergence between native and invasive populations, suggesting a flexible strategy comprising a dynamic response to spatial and temporal environmental variation with implications for predicting dispersal and range dynamics arising from environmental change.  相似文献   

12.
Spatial sorting is a process that can contribute to microevolutionary change by assembling phenotypes through space, owing to nonrandom dispersal. Here we first build upon and develop the “neutral” version of the spatial sorting hypothesis by arguing that in systems that are not characterized by repeated range expansions, the evolutionary effects of variation in dispersal capacity and assortative mating might not be independent of but interact with natural selection. In addition to generating assortative mating, variation in dispersal capacity together with spatial and temporal variation in quality of spawning area is likely to influence both reproductive success and survival of spawning migrating individuals, and this will contribute to the evolution of dispersal‐enhancing traits. Next, we use a comparative approach to examine whether differences in spawning migration distance among 18 species of freshwater Anguilla eels have evolved in tandem with two dispersal‐favoring traits. In our analyses, we use information on spawning migration distance, body length, and vertebral number that was obtained from the literature, and a published whole mitochondrial DNA‐based phylogeny. Results from comparative analysis of independent contrasts showed that macroevolutionary shifts in body length throughout the phylogeny have been associated with concomitant shifts in spawning migration. Shifts in migration distance were not associated with shifts in number of vertebrae. These findings are consistent with the hypothesis that spatial sorting has contributed to the evolution of more elongated bodies in species with longer spawning migration distances, or resulted in evolution of longer migration distances in species with larger body size. This novel demonstration is important in that it expands the list of ecological settings and hierarchical levels of biological organization for which the spatial sorting hypothesis seems to have predictive power.  相似文献   

13.
We combine spatial data on home ranges of individuals and microsatellite markers to examine patterns of fine-scale spatial genetic structure and dispersal within a brush-tailed rock-wallaby (Petrogale penicillata) colony at Hurdle Creek Valley, Queensland. Brush-tailed rock-wallabies were once abundant and widespread throughout the rocky terrain of southeastern Australia; however, populations are nearly extinct in the south of their range and in decline elsewhere. We use pairwise relatedness measures and a recent multilocus spatial autocorrelation analysis to test the hypotheses that in this species, within-colony dispersal is male-biased and that female philopatry results in spatial clusters of related females within the colony. We provide clear evidence for strong female philopatry and male-biased dispersal within this rock-wallaby colony. There was a strong, significant negative correlation between pairwise relatedness and geographical distance of individual females along only 800 m of cliff line. Spatial genetic autocorrelation analyses showed significant positive correlation for females in close proximity to each other and revealed a genetic neighbourhood size of only 600 m for females. Our study is the first to report on the fine-scale spatial genetic structure within a rock-wallaby colony and we provide the first robust evidence for strong female philopatry and spatial clustering of related females within this taxon. We discuss the ecological and conservation implications of our findings for rock-wallabies, as well as the importance of fine-scale spatial genetic patterns in studies of dispersal behaviour.  相似文献   

14.
The process of range expansion often selects for traits that maximize invasion success at range edges. For example, during range expansion, individuals with greater dispersal and colonization ability will be selected for towards range edges. For wind dispersed plants, however, there exists a fundamental trade-off between dispersal and colonization ability (germination success and growth) that is mediated by seed size; smaller seeds often have greater dispersal ability but poorer colonization ability. We investigated the nature of the dispersal/colonization trade-off by comparing dispersal ability (wing loading ratio: seed mass/wing area), germination success and growth related traits across multiple populations of a coastal exotic invasive plant species (Gladiolus gueinzii Kunze) along its entire introduced distribution in eastern Australia. We found that G. gueinzii had significantly greater dispersal ability towards its range edges which was mediated by a decrease in seed mass. However, this was not associated with a decrease in probability of germination or growth after 3 months. In fact, seeds from range edge populations had significantly faster germination times. Our results suggest that a shift towards greater dispersal ability does not have an associated negative effect on the colonization ability of G. gueinzii and may be a key factor in promoting further range expansion of this exotic invasive species.  相似文献   

15.
Habitat modification and invasive species are significant drivers of biodiversity decline. However, distinguishing between the impacts of these two drivers on native species can be difficult. For example, habitat modification may reduce native species abundance, while an invasive species may take advantage of the new environment. This scenario has been described as the driver‐passenger model, with ‘passengers’ taking advantage of habitat modification and ‘drivers’ causing native species decline. Therefore, research must incorporate both habitat modification and invasive species impact to successfully investigate native species decline. In this paper, we used the common myna (Acridotheres tristis) as a case study to investigate the driver‐passenger model. We investigated changes in bird abundance, over 2 years, in relation to different habitat types and common myna abundance. We hypothesized that the common myna is both a passenger of habitat change and a driver of some bird species decline. Our results indicated that the abundance of many native species is greater in high tree density nature reserves, while the common myna was uncommon in these areas. Common myna abundance was almost three times higher in urban areas than nature reserves and declined rapidly as tree density in nature reserves increased. Our findings indicated that the common myna is primarily a passenger of habitat change. However, we also observed negative associations between common myna abundance and some bird species. We stress the importance of simultaneously investigating both invasive species impact and habitat modification. We suggest habitat restoration could be a useful tool for both native species recovery and invasive species control. Understanding the drivers of native species decline will help inform impact mitigation and direct further research.  相似文献   

16.
Research into large‐scale ecological rules has a long tradition but has received increasing attention over the last two decades. Whereas environmental, especially climatic, influences on the geographic distribution of species traits such as body size are well understood in mammals and birds, our knowledge of the determinants and mechanisms which shape spatial patterns in invertebrate traits is still limited. This study analyzes macroecological patterns in two traits of the highly diverse invertebrate taxon of carabid beetles: body size and hind wing development, the latter being directly linked to species’ dispersal abilities. We tested for potential impacts of environmental variables (spatial, areal, topographic and climate‐related) representing both contemporary conditions and historical processes on large‐scale patterns in the two traits. Regression models revealed hump‐shaped relationships with latitude for both traits in the categories 1) all species, 2) widespread and 3) endemic (restricted‐range) species: body size and the proportion of flightless species increased from northern towards southern Europe and then decreased towards North Africa. The shared and independent influence of environmental factors was analyzed by variation partitioning. While contemporary environmental productivity and stability (represented by measures of ambient energy and water energy balance) had strong positive relationships with carabid body size, patterns in hind wing development were most notably influenced by topography (elevation range). Regions with high elevation range and low historical climate variability (since the last ice age), which likely offer long‐term stable habitats (i.e. glacial refugia), coincide with regions with high proportions of flightless species. Thus geographic patterns in carabid traits tend to be formed not only by recent climate but also by dispersal and historical climate and processes (i.e. glaciations and postglacial colonization).  相似文献   

17.
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

18.
Studies focusing on the effects of spatial processes versus environmental filtering on aquatic metacommunities have so far been focused almost entirely on relatively isolated systems, such as sets of different lakes or streams. In contrast, metacommunity patterns and underlying processes within a single aquatic system have received less attention. In this study, we aimed to examine how strongly variations in different diversity indices are affected by spatial processes (dispersal) versus local environmental conditions (species sorting) within a large lake system. Modern biodiversity research focuses on multiple diversity facets because different indices may be uncorrelated within and between facets, and they may thus describe different phenomena. We investigated the relationship of littoral macroinvertebrate diversity with environmental and spatial factors using 10 indices of species, functional and taxonomic diversity. Using spatial factors as proxies of dispersal, we decomposed variation in diversity indices into fractions attributable to environmental and spatial factors. Our results highlighted generally equal or higher importance of spatial processes in controlling the variation in diversity indices when compared to local environmental variables. Local environmental conditions accounted for higher proportion of variation only in a single index (i.e. taxonomic diversity). These findings suggest that the effects of high dispersal rates (mass effects) may override the influences of local environmental conditions (species sorting) on the diversity in highly‐connected aquatic system, such as large lakes and marine coastal systems. Our results further suggest that biodiversity assessment and environmental monitoring in highly‐connected systems cannot rely solely on the idea of environmental control. We hence recommend that the roles of both environmental and spatial processes should be integrated in basic and applied ecological research of aquatic systems.  相似文献   

19.
Explanations for rapid species' range expansions have typically been purely ecological, with little attention given to evolutionary processes. We tested predictions for the evolution of dispersal during range expansion using four species of wing-dimorphic bush cricket (Conocephalus discolor, Conocephalus dorsalis, Metrioptera roeselii, and Metrioptera brachyptera). We observed distinct changes in dispersal in the two species with expanding ranges. Recently colonized populations at the range margin showed increased frequencies of dispersive, long-winged (macropterous) individuals, compared with longer-established populations in the range core. This increase in dispersal appeared to be short-lived because 5-10 years after colonization populations showed similar incidences of macroptery to populations in the range core. These changes are consistent with evolutionary change; field patterns persisted when nymphs were reared under controlled environmental conditions, and range margin individuals reared in the laboratory flew farther than range core individuals in a wind tunnel. There was also a reproductive trade-off with dispersal in both females and males, which could explain the rapid reversion to lower rates of dispersal once populations become established. The effect of population density on wing morphology differed between populations from the range core (no significant effect of density) and expanding range margins (negative density dependence), which we propose is part of the mechanism of the changes in dispersal. Transient changes in dispersal are likely to be common in many species undergoing range expansion and can have major population and biogeographic consequences.  相似文献   

20.
Wing polymorphism in insects provides a good model system for investigating evolutionary dynamics and population divergence in dispersal‐enhancing traits. This study investigates the contribution of divergent selection, trade‐offs, behaviour and spatial sorting to the evolutionary dynamics of wing polymorphism in the pygmy grasshopper Tetrix subulata (Tetrigidae: Orthoptera). We use data for > 2800 wild‐caught individuals from 13 populations and demonstrate that the incidence of the long‐winged (macropterous) morph is higher and changes faster between years in disturbed habitats characterized by succession than in stable habitats. Common garden and mother‐offspring resemblance studies indicate that variation among populations and families is genetically determined and not influenced to any important degree by developmental plasticity in response to maternal condition, rearing density or individual growth rate. Performance trials show that only the macropterous morph is capable of flight and that propensity to fly differs according to environment. Mark–recapture data reveal no difference in the distance moved between free‐ranging long‐ and short‐winged individuals. There is no consistent difference across populations and years in number of hatchlings produced by long‐ and shorter‐winged females. Our findings suggest that the variable frequency of the long‐winged morph among and within pygmy grasshopper populations may reflect evolutionary modifications driven by spatial sorting due to phenotype‐ and habitat type–dependent emigration and immigration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号