首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration. Here, we developed viral-based methods for the in vivo detection and manipulation of the activity-dependent microRNA, miR-132, in the mouse hippocampus. We find, using lentiviral and retroviral reporters of miR-132 activity, that miR-132 is expressed at the right place and right time to influence the integration of newborn neurons. Retroviral knockdown of miR-132 using a specific 'sponge' containing multiple target sequences impaired the integration of newborn neurons into the excitatory synaptic circuitry of the adult brain. To assess potential miR-132 targets, we used a whole-genome microarray in PC12 cells, which have been used as a model of neuronal differentiation. miR-132 knockdown in PC12 cells resulted in the increased expression of hundreds of genes. Functional grouping indicated that genes involved in inflammatory/immune signaling were the most enriched class of genes induced by miR-132 knockdown. The correlation of miR-132 knockdown to increased proinflammatory molecular expression may indicate a mechanistic link whereby miR-132 functions as an endogenous mediator of activity-dependent integration in vivo.  相似文献   

2.
Pyramidal neurons are characterized by their distinct apical and basal dendritic trees and the pyramidal shape of their soma. They are found in several regions of the CNS and, although the reasons for their abundance remain unclear, functional studies--especially of CA1 hippocampal and layer V neocortical pyramidal neurons--have offered insights into the functions of their unique cellular architecture. Pyramidal neurons are not all identical, but some shared functional principles can be identified. In particular, the existence of dendritic domains with distinct synaptic inputs, excitability, modulation and plasticity appears to be a common feature that allows synapses throughout the dendritic tree to contribute to action-potential generation. These properties support a variety of coincidence-detection mechanisms, which are likely to be crucial for synaptic integration and plasticity.  相似文献   

3.
4.
5.
The responses to odor stimulation of 40 single units in the olfactory mucosa and of 18 units in the olfactory bulb of the tortoise (Gopherus polyphemus) were recorded with indium-filled, Pt-black-tipped microelectrodes. The test battery consisted of 27 odorants which were proved effective by recording from small bundles of olfactory nerve. Two concentrations of each odorant were employed. These values were adjusted for response magnitudes equal to those for amyl acetate at –2.5 and –3.5 log concentration in olfactory twig recording. Varying concentrations were generated by an injection-type olfactometer. The mucosal responses were exclusively facilitory with a peak frequency of 16 impulses/sec. 19 mucosal units responded to at least one odorant and each unit was sensitive to a limited number of odorants (1–15). The sensitivity pattern of each unit was highly individual, with no clear-cut types, either chemical or qualitative, emerging. Of the 18 olfactory bulb units sampled, all responded to at least one odorant. The maximum frequency observed during a response was 39 impulses/sec. The bulbar neurons can be classified into two types. There are neurons that respond exclusively with facilitation and others that respond with facilitation to some odorants and with inhibition to others. Qualitatively or chemically similar odorants did not generate similar patterns across bulbar units.  相似文献   

6.
Neurogenesis is the process of neuron generation, which occurs not only during embryonic development but also in restricted niches postnatally. One such region is called the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb (OB). Neurons that are born postnatally migrate through more complex territories and integrate into fully functional circuits. Therefore, differences in the differentiation of embryonic and postnatally born neurons may exist. Dendritogenesis is an important process for the proper formation of future neuronal circuits. Dendritogenesis in embryonic neurons cultured in vitro was shown to depend on the mammalian target of rapamycin (mTOR). Still unknown, however, is whether mTOR could regulate the dendritic arbor morphology of SVZ‐derived postnatal OB neurons under physiological conditions in vivo. The present study used in vitro cultured and differentiated SVZ‐derived neural progenitors and found that both mTOR complex 1 and mTOR complex 2 were required for the dendritogenesis of SVZ‐derived neurons. Furthermore, using a combination of in vivo electroporation of neural stem cells in the SVZ and genetic and pharmacological inhibition of mTOR, it was found that mTOR was crucial for the growth of basal and apical dendrites in postnatally born OB neurons under physiological conditions and contributed to the stabilization of their basal dendrites. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1308–1327, 2016  相似文献   

7.
Actin‐based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin‐regulating protein, Eps8, is recruited to the spine head during chemically induced long‐term potentiation in culture and that inhibition of its actin‐capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin‐capping activity in spine morphogenesis and plasticity and indicate that reductions in actin‐capping proteins may characterize forms of intellectual disabilities associated with spine defects.  相似文献   

8.
In order to examine the effects of activity on spine production and/or maintenance in the cerebral cortex, we have compared the number of dendritic spines on pyramidal neurons in slices of PO mouse somatosensory cortex maintained in organotypic slice cultures under conditions that altered basal levels of spontaneous electrical activity. Cultures chronically exposed to 100 μM picrotoxin (PTX) for 14 days exhibited significantly elevated levels of electrical activity when compared to neurons in control cultures. Pyramidal neurons raised in the presence of PTX showed significantly densities of dendritic spines on primary apical, secondary apical, and secondary basal dendrites when compared to control cultures. The PTX-induced increase in spine density was dose dependent and appeared to saturate at 100 μM. Cultures exhibiting little or no spontaneous activity, as a result of growth in a combination of PTX and tetrodotoxin (TTx), showed significantly fewer dendritic spines compared to cultures maintained in PTX alone. These results demonstrate that the density of spines on layers V and VI pyramidal neurons can be modulated by growth conditions that alter the levels of spontaneous electrical activity. 1994 John Wiley & Sons, Inc.  相似文献   

9.
Dendritic spines are small protrusions along dendrites where the postsynaptic components of most excitatory synapses reside in the mature brain. Morphological changes in these actin-rich structures are associated with learning and memory formation. Despite the pivotal role of the actin cytoskeleton in spine morphogenesis, little is known about the mechanisms regulating actin filament polymerization and depolymerization in dendritic spines. We show that the filopodia-like precursors of dendritic spines elongate through actin polymerization at both the filopodia tip and root. The small GTPase Rif and its effector mDia2 formin play a central role in regulating actin dynamics during filopodia elongation. Actin filament nucleation through the Arp2/3 complex subsequently promotes spine head expansion, and ADF/cofilin-induced actin filament disassembly is required to maintain proper spine length and morphology. Finally, we show that perturbation of these key steps in actin dynamics results in altered synaptic transmission.  相似文献   

10.
11.
We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer''s disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function.  相似文献   

12.
Drebrin an actin‐bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild‐type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5‐hydroxytryptamine receptor 1A (5‐HT1AR), and 5‐hydroxytryptamine receptor 7 (5‐HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel‐based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory‐related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory‐related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  相似文献   


13.
Sala C  Piëch V  Wilson NR  Passafaro M  Liu G  Sheng M 《Neuron》2001,31(1):115-130
The Shank family of proteins interacts with NMDA receptor and metabotropic glutamate receptor complexes in the postsynaptic density (PSD). Targeted to the PSD by a PDZ-dependent mechanism, Shank promotes the maturation of dendritic spines and the enlargement of spine heads via its ability to recruit Homer to postsynaptic sites. Shank and Homer cooperate to induce accumulation of IP3 receptors in dendritic spines and formation of putative multisynapse spines. In addition, postsynaptic expression of Shank enhances presynaptic function, as measured by increased minifrequency and FM4-64 uptake. These data suggest a central role for the Shank scaffold in the structural and functional organization of the dendritic spine and synaptic junction.  相似文献   

14.
Modulatory interneurons such as, the cholinergic interneuron, are always a perplexing subject to study. Far from clear-cut distinctions such as excitatory or inhibitory, modulating interneurons can have many, often contradictory effects. The striatum is one of the most densely expressing brain areas for cholinergic markers, and actylcholine (ACh) plays an important role in regulating synaptic transmission and cellular excitability. Every cell type in the striatum has receptors for ACh. Yet even for a given cell type, ACh affecting different receptors can have seemingly opposing roles. This review highlights relevant effects of ACh on medium spiny neurons (MSNs) of the striatum and suggests how its many effects may work in concert to modulate MSN firing properties.  相似文献   

15.
Input from olfactory receptor neurons is first organized and processed in the glomerular layer of the olfactory bulb. Olfactory glomeruli serve as functional units in coding olfactory information and contain a complex network of synaptic connections. Odor information has long been thought to be represented by spatial patterns of glomerular activation; recent work has, additionally, shown that these patterns are temporally dynamic. At the same time, recent advances in our understanding of the glomerular network suggest that glomerular processing serves to temporally sharpen these dynamics and to modulate spatial patterns of glomerular activity. We speculate that odor representations and their postsynaptic processing are tuned to and shaped by the sniffing behavior of the animal.  相似文献   

16.
Septins are GTP-binding proteins that polymerize into heteromeric filaments and form microscopic bundles or ring structures in vitro and in vivo. Because of these properties and their ability to associate with membrane, F-actin, and microtubules, septins have been generally regarded as cytoskeletal components [1, 2]. Septins are known to play roles in cytokinesis, in membrane trafficking, and as structural scaffolds; however, their function in neurons is poorly understood. Many members of the septin family, including Septin 7 (Sept7), were found by mass-spectrometry analysis of postsynaptic density (PSD) fractions of the brain [3, 4], suggesting a possible postsynaptic function of septins in neurons. We report that Sept7 is localized at the base of dendritic protrusions and at dendritic branch points in cultured hippocampal neurons--a distribution reminiscent of septin localization in the bud neck of budding yeast. Overexpression of Sept7 increased dendrite branching and the density of dendritic protrusions, whereas RNA interference (RNAi)-mediated knockdown of Sept7 led to reduced dendrite arborization and a greater proportion of immature protrusions. These data suggest that Sept7 is critical for spine morphogenesis and dendrite development during neuronal maturation.  相似文献   

17.
Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n = 6) or a high fat diet (HFD) (n = 12) for 12 weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n = 6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1 mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats.  相似文献   

18.
Viral upper respiratory infections are the most common cause of clinical olfactory dysfunction, but the pathogenesis of dysosmia after viral infection is poorly understood. Biopsies of the olfactory mucosa in patients that complain of dysosmia after viral infection fall into two categories: one in which no olfactory epithelium is seen and another in which the epithelium is disordered and populated mainly by immature neurons. We have used intranasal inoculation with an olfactory bulb line variant of MHV to study the consequences of viral infection on peripheral olfactory structures. MHV OBLV has little direct effect on the olfactory epithelium, but causes extensive spongiotic degeneration and destruction of mitral cells and interneurons in the olfactory bulb such that the axonal projection from the bulb via the lateral olfactory tract is markedly reduced. Moreover, surviving mitral cells apparently remain disconnected from the sensory neuron input to the glomerular layer, judging from retrograde labeling studies using Dil. The damage to the bulb indirectly causes a persistent, long-term increase in the turnover of sensory neurons in the epithelium, i.e. the relative proportion of immature to mature sensory neurons and the rate of basal cell proliferation both increase. The changes that develop after inoculation with MHV OBLV closely resemble the disordering of the olfactory epithelium in some patient biopsies. Thus, damage to the olfactory nerve or bulb may contribute to a form of post-viral olfactory dysfunction and MHV OBLV is a useful model for studying the pathogenesis of this form of dysosmia.  相似文献   

19.
Dendrite morphology of neurons provides a structural basis for their physiological characteristics, and is precisely regulated in a cell type-dependent manner. Using a unique transposon-mediated gene transfer system that enables conditional and cell-type specific expression of exogenous genes, we investigated the role of cadherin on dendritic morphogenesis of horizontal cells in the developing chicken retina. We first visualized single horizontal cells by overexpressing membrane-targeted EGFP, and confirmed that there were three subtypes of horizontal cells, the dendritic terminals of which projected to distinct synaptic sites in the outer plexiform layer. Expression of a dominant-negative cadherin decreased the dendritic field size, and perturbed the termination of dendritic processes onto the photoreceptor cells. The cadherin blockade also impaired the accumulation of GluR4, a postsynaptic marker, at the cone pedicles. We thus provide in vivo evidence that cadherin is required for dendrite morphogenesis of horizontal cells and subsequent synapse formation with photoreceptor cells in the vertebrate retina.  相似文献   

20.
The Collapsin Response Mediator Proteins (CRMPS) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5(-/-) mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号