首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prolonged neuroinflammation is a driving force for neurodegenerative disease, and agents against inflammatory responses are regarded as potential treatment strategies. Here we aimed to evaluate the prevention effects on gliosis by dexamethasone (DEX), an anti-inflammation drug. We used DEX to treat the nicastrin conditional knockout (cKO) mouse, a neurodegenerative mouse model. DEX (10 mg/kg) was given to 2.5-month-old nicastrin cKO mice, which have not started to display neurodegeneration and gliosis, for 2 months. Immunohistochemistry (IHC) and Western blotting techniques were used to detect changes in neuroinflammatory responses. We found that activation of glial fibrillary acidic protein (GFAP) positive or ionized calcium binding adapter molecule1 (Iba1) positive cells was not inhibited in nicastrin cKO mice treated with DEX as compared to those treated with saline. These data suggest that DEX does not prevent or ameliorate gliosis in a neurodegenerative mouse model when given prior to neuronal or synaptic loss.  相似文献   

2.
The NAD+-dependent deacylase family of sirtuin enzymes have been implicated in biological ageing, late-life health and overall lifespan, though of these members, a role for sirtuin-2 (SIRT2) is less clear. Transgenic overexpression of SIRT2 in the BubR1 hypomorph model of progeria can rescue many aspects of health and increase overall lifespan, due to a specific interaction between SIRT2 and BubR1 that improves the stability of this protein. It is less clear whether SIRT2 is relevant to biological ageing outside of a model where BubR1 is under-expressed. Here, we sought to test whether SIRT2 over-expression would impact the overall health and lifespan of mice on a nonprogeroid, wild-type background. While we previously found that SIRT2 transgenic overexpression prolonged female fertility, here, we did not observe any additional impact on health or lifespan, which was measured in both male and female mice on standard chow diets, and in males challenged with a high-fat diet. At the biochemical level, NMR studies revealed an increase in total levels of a number of metabolites in the brain of SIRT2-Tg animals, pointing to a potential impact in cell composition; however, this did not translate into functional differences. Overall, we conclude that strategies to enhance SIRT2 protein levels may not lead to increased longevity.  相似文献   

3.
4.
In many naturalistic studies of the hippocampus wild animals are held in captivity. To test if captivity itself affects hippocampal integrity, adult black‐capped chickadees (Poecile atricapilla) were caught in the fall, injected with bromodeoxyuridine to mark neurogenesis, and alternately released to the wild or held in captivity. The wild birds were recaptured after 4–6 weeks and perfused simultaneously with their captive counterparts. The hippocampus of captive birds was 23% smaller than wild birds, with no hemispheric differences in volume within groups. Between groups there was no statistically significant difference in the size of the telencephalon, or in the number and density of surviving new cells. Proximate causes of the reduced hippocampal volume could include stress, lack of exercise, diminished social interaction, or limited caching opportunity—a hippocampal‐dependent activity. The results suggest the avian hippocampus—a structure essential for rapid, complex relational and spatial learning—is both plastic and sensitive, much as in mammals, including humans. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

5.
6.
7.
8.
Ab V genes in mice deficient for the postreplication mismatch repair factor MutS homolog (MSH2) have been reported to display an abnormal bias for hypermutations at G and C nucleotides and hotspots. We previously showed that the germinal center (GC) response is severely attenuated in MSH2-deficient mice. This suggested that premature death of GC B cells might preclude multiple rounds of hypermutation necessary to generate a normal spectrum of base changes. To test this hypothesis, we created MSH2-deficient mice in which Bcl-2 expression was driven in B cells from a transgene. In such mice, the elevated levels of intra-GC apoptosis and untimely GC dissolution characteristic of MSH2-deficient mice are suppressed. However, the spectrum of hypermutation is unchanged. These data indicate that the effects of MSH2 deficiency on GC B cell viability and the hypermutation process are distinct.  相似文献   

9.
The mammalian 1-Cys peroxiredoxin (Prdx6) is a unique member of the peroxiredoxin family of proteins capable of protecting cells from metal-catalyzed oxidative damage. We recently identified Prdx6 as a candidate for the quantitative trait locus Ath1, a gene responsible for a difference in diet-induced atherosclerosis susceptibility in mice. To investigate the role of Prdx6 in atherosclerosis, we generated transgenic mice that overexpress the Prdx6 allele from the Ath1-resistant 129/SvJ strain on an Ath1-susceptible C57BL/6J background. These mice expressed significantly elevated levels of Prdx6 mRNA and protein in multiple tissues including liver, aorta, and peritoneal macrophages, which accumulated significantly lower levels of hydrogen peroxide, revealing an enhanced antioxidant activity in these mice. However, overexpression of Prdx6 had no protective effect on LDL oxidation in vitro, and transgenic mice fed an atherogenic diet for 10 weeks did not possess an increased resistance to atherosclerosis nor did they maintain the high prediet plasma HDL levels consistent with the Ath1-resistant phenotype. In addition, the Prdx6 allele from the susceptible strain was shown to have a higher antioxidant activity than that of the resistant strains. These data suggest that the increased peroxidase activity attributable to Prdx6 overexpression in transgenic mice is not sufficient to protect mice from atherosclerosis, and that Prdx6 is not likely to be the gene underlying Ath1.  相似文献   

10.
Bax and Bak are critical effectors of apoptosis. Although both are widely expressed and usually functionally redundant, recent studies suggest that Bak has particular importance in certain cell types. Genetic and biochemical studies indicate that Bak activation is prevented primarily by Mcl-1 and Bcl-xL, whereas Bax is held in check by all pro-survival Bcl-2 homologues, including Bcl-2 itself. In this study, we have investigated whether loss of Bak or elevated Mcl-1 modulates haemopoietic abnormalities provoked by overexpression of Bcl-2. The Mcl-1 transgene had little impact, probably because the expression level was insufficient to effectively reduce Bak activation. However, loss of Bak enhanced lymphocytosis in vavP-BCL-2 transgenic mice and increased resistance of their thymocytes to some cytotoxic agents, implying that Bak-specific signals can be triggered in certain lymphoid populations. Nevertheless, lack of Bak had no significant impact on thymic abnormalities in vavP-BCL-2tg mice, which kinetic analysis suggested was due to accumulation of self-reactive thymocytes that resist deletion. Intriguingly, although Bak−/− mice have elevated platelet counts, Bak−/−vavP-BCL-2 mice, like vavP-BCL-2 littermates, were thrombocytopaenic. To clarify why, the vavP-BCL-2 platelet phenotype was scrutinised more closely. Platelet life span was found to be elevated in vavP-BCL-2 mice, which should have provoked thrombocytosis, as in Bak−/− mice. Analysis of bone marrow chimaeric mice suggested the low platelet phenotype was due principally to extrinsic factors. Following splenectomy, blood platelets remained lower in vavP-BCL-2 than wild-type mice. However, in Rag1−/− BCL-2tg mice, platelet levels were normal, implying that elevated lymphocytes are primarily responsible for BCL-2tg-induced thrombocytopaenia.  相似文献   

11.
《Free radical research》2013,47(4):483-495
Abstract

This study examined the effects of (?)schisandrin B [(?)Sch B] on MAPK and Nrf2 activation and the subsequent induction of glutathione antioxidant response and cytoprotection against apoptosis in AML12 hepatocytes. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitors and Nrf2 RNAi, were used to delineate the signalling pathway. (?)Sch B caused a time-dependent activation of MAPK in AML12 cells, particularly the ERK1/2. The MAPK activation was followed by an enhancement in Nrf2 nuclear translocation and the eliciting of a glutathione antioxidant response. Reactive oxygen species arising from a CYP-catalysed reaction with (?)Sch B seemed to be causally related to the activation of MAPK and Nrf2. ERK inhibition by U0126 or Nrf2 suppression by Nrf2 RNAi transfection almost completely abrogated the cytoprotection against menadione-induced apoptosis in (?)Sch B-pre-treated cells. (?)Sch B pre-treatment potentiated the menadione-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against carbon tetrachloride-hepatotoxicity in an in vivo mouse model. In conclusion, (?)Sch B triggers a redox-sensitive ERK/Nrf2 signalling, which then elicits a cellular glutathione antioxidant response and protects against oxidant-induced apoptosis in AML12 cells.  相似文献   

12.
Abstract This study examined the effects of (-)schisandrin B [(-)Sch B] on MAPK and Nrf2 activation and the subsequent induction of glutathione antioxidant response and cytoprotection against apoptosis in AML12 hepatocytes. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitors and Nrf2 RNAi, were used to delineate the signalling pathway. (-)Sch B caused a time-dependent activation of MAPK in AML12 cells, particularly the ERK1/2. The MAPK activation was followed by an enhancement in Nrf2 nuclear translocation and the eliciting of a glutathione antioxidant response. Reactive oxygen species arising from a CYP-catalysed reaction with (-)Sch B seemed to be causally related to the activation of MAPK and Nrf2. ERK inhibition by U0126 or Nrf2 suppression by Nrf2 RNAi transfection almost completely abrogated the cytoprotection against menadione-induced apoptosis in (-)Sch B-pre-treated cells. (-)Sch B pre-treatment potentiated the menadione-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against carbon tetrachloride-hepatotoxicity in an in vivo mouse model. In conclusion, (-)Sch B triggers a redox-sensitive ERK/Nrf2 signalling, which then elicits a cellular glutathione antioxidant response and protects against oxidant-induced apoptosis in AML12 cells.  相似文献   

13.
This study investigated the signal transduction pathway involved in the cytoprotective action of (-)schisandrin B [(-)Sch B, a stereoisomer of Sch B]. Using H9c2 cells, the authors examined the effects of (-)Sch B on MAPK and Nrf2 activation, as well as the subsequent eliciting of glutathione response and protection against apoptosis. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitor, and Nrf2 RNAi, were used to delineate the signaling pathway. (-)Sch B caused a time-dependent activation of MAPK in H9c2 cells, with the degree of ERK activation being much larger than that of p38 or JNK. The MAPK activation was followed by an increase in the level of nuclear Nrf2, an indirect measure of Nrf2 activation, and the eliciting of a glutathione antioxidant response. The activation of MAPK and Nrf2 seemed to involve oxidants generated from a CYP-catalyzed reaction with (-)Sch B. Both ERK inhibition by U0126 and Nrf2 suppression by Nrf2 RNAi transfection largely abolished the cytoprotection against hypoxia/reoxygenation-induced apoptosis in (-)Sch B-pretreated cells. (-)Sch B pretreatment potentiated the reoxygenation-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against ischemia/reperfusion injury in an ex vivo rat heart model. The results indicate that (-)Sch B triggers a redox-sensitive ERK/Nrf2 signaling, which then elicits a cellular glutathione antioxidant response and protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. The ERK-mediated signaling is also likely involved in the cardioprotection afforded by Sch B in vivo.  相似文献   

14.
Alcoholic liver disease (ALD)-related fibrosis results from a variety of mechanisms including the accumulation of acetaldehyde, reactive oxygen species, and hepatic overload of endogenous lipopolysaccharide (LPS). Alcohol cessation is the therapeutic mainstay for patients with all stages of ALD, whereas pharmacological strategies for liver fibrosis have not been established. Sulforaphane, a phytochemical found in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) and exerts anticancer, antidiabetic, and antimicrobial effects; however, few studies investigated its efficacy in the development of ALD-related fibrosis. Herein, we investigated the effect of sulforaphane on acetaldehyde metabolism and liver fibrosis in HepaRG and LX-2 cells, human hepatoma and hepatic stellate cell lines, respectively, as well as in a mouse model of alcoholic liver fibrosis induced by ethanol plus carbon tetrachloride (EtOH/CCl4). Sulforaphane treatment induced the activity of acetaldehyde-metabolizing mitochondrial aldehyde dehydrogenase in HepaRG cells and suppressed the acetaldehyde-induced proliferation and profibrogenic activity in LX-2 cells with upregulation of Nrf2-regulated antioxidant genes, including HMOX1, NQO1, and GSTM3. Moreover, sulforaphane attenuated the LPS/toll-like receptor 4-mediated sensitization to transforming growth factor-β with downregulation of NADPH oxidase 1 (NOX1) and NOX4. In EtOH/CCl4-treated mice, oral sulforaphane administration augmented hepatic acetaldehyde metabolism. Additionally, sulforaphane significantly inhibited Kupffer cell infiltration and fibrosis, decreased fat accumulation and lipid peroxidation, and induced Nrf2-regulated antioxidant response genes in EtOH/CCl4-treated mice. Furthermore, sulforaphane treatment blunted hepatic exposure of gut-derived LPS and suppressed hepatic toll-like receptor 4 signaling pathway. Taken together, these results suggest sulforaphane as a novel therapeutic strategy in ALD-related liver fibrosis.  相似文献   

15.
Chimera and cell marking studies suggest that axial determination in mouse embryos occurs at postimplantation stages. In contrast, Xenopus laevis axes are determined early due to the asymmetric distribution of maternally derived factors in the one-cell zygote. In our earlier study we used lithium chloride (LiCl) to perturb development of mouse axes. Here we investigate whether the lithium induced axial defects in mouse are being mediated by the beta-catenin/Lef-1 pathway as in Xenopus laevis. In lithium treated embryos we did not observe any changes in the amount or localization of beta-catenin protein. Furthermore, the lack of Lef-1 mRNA in treated and untreated embryos indicates the LiCl induced axial defects in the mouse are not mediated by the beta-catenin/Lef-1 pathway.  相似文献   

16.
Skeletal muscle atrophy is a debilitating outcome of a number of chronic diseases and conditions associated with loss of muscle innervation by motor neurons, such as aging and neurodegenerative diseases. We previously reported that denervation-induced loss of muscle mass is associated with activation of cytosolic phospholipase A2 (cPLA2), the rate-limiting step for the release of arachidonic acid from membrane phospholipids, which then acts as a substrate for metabolic pathways that generate bioactive lipid mediators. In this study, we asked whether 5- and 12/15-lipoxygenase (LO) lipid metabolic pathways downstream of cPLA2 mediate denervation-induced muscle atrophy in mice. Both 5- and 12/15-LO were activated in response to surgical denervation; however, 12/15-LO activity was increased ~2.5-fold versus an ~1.5-fold increase in activity of 5-LO. Genetic and pharmacological inhibition of 12/15-LO (but not 5-LO) significantly protected against denervation-induced muscle atrophy, suggesting a selective role for the 12/15-LO pathway in neurogenic muscle atrophy. The activation of the 12/15-LO pathway (but not 5-LO) during muscle atrophy increased NADPH oxidase activity, protein ubiquitination, and ubiquitin–proteasome-mediated proteolytic degradation. In conclusion, this study reveals a novel pathway for neurogenic muscle atrophy and suggests that 12/15-LO may be a potential therapeutic target in diseases associated with loss of innervation and muscle atrophy.  相似文献   

17.
18.

Background

Although the relationship between allergic inflammation and lung carcinogenesis is not clearly defined, several reports suggest an increased incidence of lung cancer in patients with asthma. We aimed at determining the functional impact of allergic inflammation on chemical carcinogenesis in the lungs of mice.

Methods

Balb/c mice received single-dose urethane (1 g/kg at day 0) and two-stage ovalbumin during tumor initiation (sensitization: days -14 and 0; challenge: daily at days 6-12), tumor progression (sensitization: days 70 and 84; challenge: daily at days 90-96), or chronically (sensitization: days -14 and 0; challenge: daily at days 6-12 and thrice weekly thereafter). In addition, interleukin (IL)-5 deficient and wild-type C57BL/6 mice received ten weekly urethane injections. All mice were sacrificed after four months. Primary end-points were number, size, and histology of lung tumors. Secondary end-points were inflammatory cells and mediators in the airspace compartment.

Results

Ovalbumin provoked acute allergic inflammation and chronic remodeling of murine airways, evident by airspace eosinophilia, IL-5 up-regulation, and airspace enlargement. Urethane resulted in formation of atypical alveolar hyperplasias, adenomas, and adenocarcinomas in mouse lungs. Ovalbumin-induced allergic inflammation during tumor initiation, progression, or continuously did not impact the number, size, or histologic distribution of urethane-induced pulmonary neoplastic lesions. In addition, genetic deficiency in IL-5 had no effect on urethane-induced lung tumorigenesis.

Conclusions

Allergic inflammation does not impact chemical-induced carcinogenesis of the airways. These findings suggest that not all types of airway inflammation influence lung carcinogenesis and cast doubt on the idea of a mechanistic link between asthma and lung cancer.  相似文献   

19.
Inflammatory processes are involved with all phases of atherosclerotic lesion growth. Tumor necrosis factor-alpha (TNFalpha) is an inflammatory cytokine that is thought to contribute to lesion development. Lymphotoxin-alpha (LTalpha) is also a proinflammatory cytokine with homology to TNFalpha. However, its presence or function in lesion development has not been investigated. To study the role of these molecules in atherosclerosis, the expression of these cytokines in atherosclerotic lesions was examined. The presence of both cytokines was observed within aortic sinus fatty streak lesions. To determine the function of these molecules in regulating lesion growth, mice deficient for TNFalpha or LTalpha were examined for induction of atherosclerosis. Surprisingly, loss of TNFalpha did not alter lesion development compared with wild-type mice. This brings doubt to the generally held concept that TNFalpha is a "proatherogenic cytokine." However, LTalpha deficiency resulted in a 62% reduction in lesion size. This demonstrates an unexpected role for LTalpha in promoting lesion growth. The presence of LTalpha was observed in aortic sinus lesions suggesting a direct role of LTalpha in modulating lesion growth. To determine which receptor mediated these responses, diet-induced atherosclerosis in mice deficient for each of the TNF receptors, termed p55 and p75, was examined. Results demonstrated that loss of p55 resulted in increased lesion development, but loss of p75 did not alter lesion size. The disparity in results between ligand- and receptor-deficient mice suggests there are undefined members of the TNF ligand and receptor signaling pathway involved with regulating atherogenesis.  相似文献   

20.
Oxidative stress, inflammation, and fibrosis are involved in the development and progression of focal segmental glomerulosclerosis (FSGS), a common form of idiopathic nephrotic syndrome that represents a therapeutic challenge because it has a poor response to steroids. Antroquinonol (Antroq), a purified compound, is a major active component of a mushroom, namely Antrodia camphorata, that grows in the camphor tree in Taiwan, and it has inhibitory effects on nitric oxide production and inflammatory reactions. We hypothesized that Antroq might ameliorate FSGS renal lesions by modulating the pathogenic pathways of oxidative stress, inflammation, and glomerular sclerosis in the kidney. We demonstrate that Antroq significantly (1) attenuates proteinuria, renal dysfunction, and glomerulopathy, including epithelial hyperplasia lesions and podocyte injury; (2) reduces oxidative stress, leukocyte infiltration, and expression of fibrosis-related proteins in the kidney; (3) increases renal nuclear factor E2-related factor 2 (Nrf2) and glutathione peroxidase activity; and (4) inhibits renal nuclear factor-κB (NF-κB) activation and decreases levels of transforming growth factor (TGF)-β1 in serum and kidney tissue in a mouse FSGS model. Our data suggest that Antroq might be a potential therapeutic agent for FSGS, acting by boosting Nrf2 activation and suppressing NF-κB-dependent inflammatory and TGF-β1-mediated fibrosis pathways in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号