首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The directional transport of the plant hormone auxin is a unique process mediating a wide variety of developmental processes. Auxin movement between cells depends on AUX1/LAX, PGP and PIN protein families that mediate auxin transport across the plasma membrane. The directionality of auxin flow within tissues is largely determined by polar, subcellular localization of PIN auxin efflux carriers. PIN proteins undergo rapid subcellular dynamics that is important for the process of auxin transport and its directionality. Furthermore, various environmental and endogenous signals can modulate trafficking and polarity of PIN proteins and by this mechanism change auxin distribution. Thus, the subcellular dynamics of auxin transport proteins represents an important interface between cellular processes and development of the whole plant. This review summarizes our recent contributions to the field of PIN trafficking and auxin transport regulation.  相似文献   

2.
Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment.The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.  相似文献   

3.
In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle‐tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss‐of‐function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin–A compartments is delayed after the brefeldin‐A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin‐A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin‐A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA‐a1‐labelled early endosomes or the trans‐Golgi network, but are RAB‐A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.  相似文献   

4.
武丽霞  韩丽  赵宜婷  周璇  杜云龙 《广西植物》2021,41(8):1219-1225
生长素输出载体在植物发育中起非常重要的作用.然而,生长素输出载体蛋白PIN1在农作物水稻、小麦、玉米和大豆的根和胚中的亚细胞定位尚不清楚.该研究首先分析了OsPIN1b和它的同源物的氨基酸序列特征,发现小麦(TaPIN1)、玉米(ZmPIN1b)和大豆(GmPIN1b)中的PIN1序列与水稻的OsPIN1b序列分别具有...  相似文献   

5.
The polarization of yeast and animal cells relies on membrane sterols for polar targeting of proteins to the plasma membrane, their polar endocytic recycling and restricted lateral diffusion. However, little is known about sterol function in plant-cell polarity. Directional root growth along the gravity vector requires polar transport of the plant hormone auxin. In Arabidopsis, asymmetric plasma membrane localization of the PIN-FORMED2 (PIN2) auxin transporter directs root gravitropism. Although the composition of membrane sterols influences gravitropism and localization of two other PIN proteins, it remains unknown how sterols contribute mechanistically to PIN polarity. Here, we show that correct membrane sterol composition is essential for the acquisition of PIN2 polarity. Polar PIN2 localization is defective in the sterol-biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) which displays altered sterol composition, PIN2 endocytosis, and root gravitropism. At the end of cytokinesis, PIN2 localizes initially to both newly formed membranes but subsequently disappears from one. By contrast, PIN2 frequently remains at both daughter membranes in endocytosis-defective cpi1-1 cells. Hence, sterol composition affects post-cytokinetic acquisition of PIN2 polarity by endocytosis, suggesting a mechanism for sterol action on establishment of asymmetric protein localization.  相似文献   

6.
Polar auxin transport (PAT) plays a critical role in the regulation of plant growth and development. Auxin influx carrier AUX1 is predominantly localized to the upper side of specific root cells in Arabidopsis. Overexpression of OsAGAP, an ARF-GTPase activating protein in rice, could induce the accumulation of AUX1. But the mechanism is poorly known. Here we reported that over-expression of ARF-GAP could reduce the thickness and bundling of microfilament (MF) which possibly could greatly interfere with the endocytosis of AUX1 early endosome; but not the exocytosis of AUX1 recycling endosome. Therefore, AFR-GAP over-expression suppressed-MF bundling is likely involved in regulating endocytosis of Auxin influx carrier AUX1 and in mediating auxin dependent plant development.      相似文献   

7.
The directional flow of the plant hormone auxin mediates multiple developmental processes, including patterning and tropisms. Apical and basal plasma membrane localization of AUXIN-RESISTANT1 (AUX1) and PIN-FORMED1 (PIN1) auxin transport components underpins the directionality of intercellular auxin flow in Arabidopsis thaliana roots. Here, we examined the mechanism of polar trafficking of AUX1. Real-time live cell analysis along with subcellular markers revealed that AUX1 resides at the apical plasma membrane of protophloem cells and at highly dynamic subpopulations of Golgi apparatus and endosomes in all cell types. Plasma membrane and intracellular pools of AUX1 are interconnected by actin-dependent constitutive trafficking, which is not sensitive to the vesicle trafficking inhibitor brefeldin A. AUX1 subcellular dynamics are not influenced by the auxin influx inhibitor NOA but are blocked by the auxin efflux inhibitors TIBA and PBA. Furthermore, auxin transport inhibitors and interference with the sterol composition of membranes disrupt polar AUX1 distribution at the plasma membrane. Compared with PIN1 trafficking, AUX1 dynamics display different sensitivities to trafficking inhibitors and are independent of the endosomal trafficking regulator ARF GEF GNOM. Hence, AUX1 uses a novel trafficking pathway in plants that is distinct from PIN trafficking, providing an additional mechanism for the fine regulation of auxin transport.  相似文献   

8.
9.
10.
11.
Laxmi A  Pan J  Morsy M  Chen R 《PloS one》2008,3(1):e1510

Background

Light plays a key role in multiple plant developmental processes. It has been shown that root development is modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells. Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport. Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to be addressed.

Methodology and Principle Findings

Using laser confocal scanning microscopy, and physiological and molecular genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process.

Conclusions and Significance

Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results, we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of auxin efflux carriers, PIN proteins, in response to the light environment.  相似文献   

12.
The immunophilin-like protein TWISTED DWARF1 (TWD1/FKBP42) has been shown to physically interact with the multidrug resistance/P-glycoprotein (PGP) ATP-binding cassette transporters PGP1 and PGP19 (MDR1). Overlapping phenotypes of pgp1/pgp19 and twd1 mutant plants suggested a positive regulatory role of TWD1 in PGP-mediated export of the plant hormone auxin, which controls plant development. Here, we provide evidence at the cellular and plant levels that TWD1 controls PGP-mediated auxin transport. twd1 and pgp1/pgp19 cells showed greatly reduced export of the native auxin indole-3-acetic acid (IAA). Constitutive overexpression of PGP1 and PGP19, but not TWD1, enhanced auxin export. Coexpression of TWD1 and PGP1 in yeast and mammalian cells verified the specificity of the regulatory effect. Employing an IAA-specific microelectrode demonstrated that IAA influx in the root elongation zone was perturbed and apically shifted in pgp1/pgp19 and twd1 roots. Mature roots of pgp1/pgp19 and twd1 plants revealed elevated levels of free IAA, which seemed to account for agravitropic root behavior. Our data suggest a novel mode of PGP regulation via FK506-binding protein-like immunophilins, implicating possible alternative strategies to overcome multidrug resistance.  相似文献   

13.
Endocytosis is an essential process by which eukaryotic cells internalize exogenous material or regulate signaling at the cell surface [1]. Different endocytic pathways are well established in yeast and animals; prominent among them is clathrin-dependent endocytosis [2, 3]. In plants, endocytosis is poorly defined, and no molecular mechanism for cargo internalization has been demonstrated so far [4, 5], although the internalization of receptor-ligand complexes at the plant plasma membrane has recently been shown [6]. Here we demonstrate by means of a green-to-red photoconvertible fluorescent reporter, EosFP [7], the constitutive endocytosis of PIN auxin efflux carriers [8] and their recycling to the plasma membrane. Using a plant clathrin-specific antibody, we show the presence of clathrin at different stages of coated-vesicle formation at the plasma membrane in Arabidopsis. Genetic interference with clathrin function inhibits PIN internalization and endocytosis in general. Furthermore, pharmacological interference with cargo recruitment into the clathrin pathway blocks internalization of PINs and other plasma-membrane proteins. Our data demonstrate that clathrin-dependent endocytosis is operational in plants and constitutes the predominant pathway for the internalization of numerous plasma-membrane-resident proteins including PIN auxin efflux carriers.  相似文献   

14.
15.
16.
17.
Cucumber seedlings display not only gravitropism but also peg formation in response to gravity. Gravimorphogenesis is mediated by auxin distribution. As first step to reveal the mechanism that regulates auxin distribution by auxin efflux, we isolated five partial cDNAs of auxin efflux carriers by RT-PCR method. In addition, we isolated two full-length cDNAs (CsPIN2, CsPIN3) from a cucumber cDNA library. CsPIN2, AtPIN3, AtPIN4 and AtPIN7 fall within the same clade. CsPIN3, AtPIN1 and CsPIN1 fall within the same clade. CsPIN5, CsPIN6 and AtPIN2 fall within the same clade. Our phylogenetic analysis of PIN in cucumber and Arabidopsis indicates that cucumber may diversify CsPIN protein compared with AtPIN protein.  相似文献   

18.
The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue‐native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo‐ and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole‐3‐acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.  相似文献   

19.
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号