首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anthropometric data, plasma lipoprotein lipid levels, and post-heparin lipoprotein lipase (PHLPL) activity were measured in nine patients with type III hyperlipoproteinemia (HLP) and two hypocholesterolemic subjects with the apo-E2/2 phenotype. Five type III HLP patients were treated with clofibrate. Log PHLPL activity was inversely correlated (r = -0.667, p less than 0.05) and age was positively correlated (r = 0.706, p less than 0.05) with cholesterol levels in the VLDL fraction of plasma from type III HLP patients. The correlation between log PHLPL and VLDL cholesterol levels remained significant when age was held constant in partial correlation analysis. Together age and log PHLPL activity accounted for 77% of individual variation in VLDL cholesterol levels in the type III patients. Clofibrate treatment raised PHLPL activity (+48%, p less than 0.05) and reduced the levels of VLDL cholesterol (-67%, P less than 0.05), VLDL triglycerides (-40%, P less than 0.02), and the ratio cholesterol/triglyceride in VLDL (-50%, P less than 0.05) in five type III HLP patients. Mean PHLPL activity was higher in the hypocholesterolemic subjects with the apo-E2/2 phenotype compared to the type III HLP patients. These results suggest that lipoprotein lipase activity and factors associated with age modulate the levels of abnormal and atherogenic remnant particles (beta-VLDL) in the VLDL plasma fraction of type III HLP patients.  相似文献   

2.
The nuclear liver X receptor (LXR) regulates multiple aspects of cholesterol, triacylglycerol (TG), and carbohydrate metabolism. Activation of LXR induces the expression of genes encoding enzymes involved in de novo lipogenesis (DNL) resulting in hepatic steatosis in mice. Pharmacological LXR activation has also been reported to improve insulin sensitivity and glucose homeostasis in diabetic rodents. The effects of pharmacological LXR ligands on insulin''s action on hepatic lipid metabolism are not known. We evaluated secretion of VLDL during a hyperinsulinemic euglycemic clamp in mice treated with the LXR-ligand T0901317. In untreated mice, hyperinsulinemia reduced the availability of plasma NEFA for VLDL-TG synthesis, increased the contribution of DNL to VLDL-TG, reduced VLDL particle size, and suppressed overall VLDL-TG production rate by approximately 50%. Upon T0901317 treatment, hyperinsulinemia failed to reduce VLDL particle size or suppress VLDL-TG production rate, but the contribution of DNL to VLDL-TG was increased. In conclusion, the effects of LXR activation by T0901317 on lipid metabolism can override the normal control of insulin to suppress VLDL particle secretion.  相似文献   

3.
Type III hyperlipoproteinemia (HLP) is usually associated with homozygosity for apolipoprotein (apo) E2. We identified a 30-year-old male German of Hungarian ancestry with severe type III HLP and apo E deficiency. The disease was expressed in an extreme phenotype with multiple cutaneous xanthomas. Apo E was detectable only in trace amounts in plasma but not in the different lipoprotein fractions. Direct sequencing of PCR-amplified segments of the apo epsilon gene identified a 10-bp deletion in exon 4 (bp 4037-4046 coding for amino acids 209-212 of the mature protein). The mutation is predictive for a reading frameshift introducing a premature stop codon (TGA) at amino acid 229. By western blot analysis, we found small amounts of a truncated apo E in the patient's plasma. Family analysis revealed that the proband was homozygous--and 10 of 24 relatives were heterozygous--for the mutation. Heterozygotes had, as compared to unaffected family members, significantly higher triglycerides (TG), very low-density lipoprotein (VLDL) cholesterol and a significantly higher VLDL cholesterol-to-serum TG ratio, which is indicative of a delayed remnant catabolism. We propose that the absence of a functionally active apo E is the cause of the severe type III HLP in the patient and that the mutation, even in a single dose in heterozygotes, predisposes in variable severity to the phenotypic expression of the disease.  相似文献   

4.
Apolipoprotein E (apoE) plays a key role in the receptor-mediated uptake of lipoproteins by the liver and therefore in regulating plasma levels of lipoproteins. ApoE may also facilitate hepatic secretion of very low density lipoprotein (VLDL) triglyceride (TG). We directly tested the hypothesis that reconstitution of hepatic apoE expression in adult apoE-deficient mice by gene transfer would acutely enhance VLDL-TG production and directly compared the three major human apoE isoforms using this approach. Second generation recombinant adenoviruses encoding the three major isoforms of human apoE (E2, E3, and E4) or a control virus were injected intravenously into apoE-deficient mice, resulting in acute expression of the apoE isoforms in the liver. Despite the expected decreases in total and VLDL cholesterol levels, apoE expression was associated with increased total and VLDL triglyceride levels (E2 > E4 > E3). The increase in TG levels significantly correlated with plasma apoE concentrations. In order to determine whether acute apoE expression influenced the rate of VLDL-TG production, additional experiments were performed. Three days after injection of adenoviruses, Triton WR1339 was injected to block lipolysis of TG-rich lipoproteins and VLDL-TG production rates were determined. Mice injected with control adenovirus had a mean VLDL-TG production rate of 74 +/- 7 micromol/h/kg. In contrast, VLDL-TG production rates in apoE-expressing mice were 363 +/- 162 micromol/h/kg, 286 +/- 175 micromol/h/kg, and 300 +/- 84 micromol/h/kg for apoE2, apoE3, and apoE4, respectively. The VLDL-TG production rates in apoE-expressing mice were all significantly greater than in control mice but were not significantly different from each other. In summary, acute expression of all three human apoE isoforms in livers of apoE-deficient mice markedly increased VLDL-TG production to a similar degree, consistent with the concept that apoE plays an important role in facilitating hepatic VLDL-TG production in an isoform-independent manner.  相似文献   

5.
The hamster was developed as a model to study very low density lipoprotein (VLDL) metabolism, since, as is the case in humans, the hamster liver was found to synthesize apoB-100 and not apoB-48. The effect of inhibiting fatty acid synthesis on the hepatic secretion of VLDL triglyceride (TG) and apolipoprotein (apo) B-100 in this model was then investigated. In an in vivo study, hamsters were fed a chow diet containing 0.15% TOFA (5-tetradecyloxy-2-furancarboxylic acid), an inhibitor of acetyl-CoA carboxylase. After 6 days of treatment, plasma triglyceride and cholesterol levels were decreased by 30.2% and 11.6%, respectively. When the secretion of VLDL-TG by the liver was measured in vivo after injection of Triton WR 1339, TOFA treatment was found to decrease VLDL-TG secretion by 40%. In subsequent in vitro studies utilizing cultured primary hamster hepatocytes, incubation with 20 microM TOFA for 4 h resulted in 98% and 76% inhibition in fatty acid and triglyceride synthesis, respectively; VLDL-TG secretion was decreased by 90%. When hepatocytes were pulsed with [3H]leucine, incubation with TOFA resulted in a 50% decrease in the incorporation of radiolabel into secreted VLDL apoB-100. The results of this study indicate that inhibition of intracellular triglyceride synthesis decreases the secretion of VLDL-TG and apoB-100, and does not result in the secretion of a dense, triglyceride-depleted lipoprotein.  相似文献   

6.
HMG-CoA reductase inhibitors (statins) are effective lipid-altering drugs for the treatment of dyslipidemia in patients with type 2 diabetes mellitus. We conducted a randomized, double-blind, placebo-controlled, crossover design trial to determine the effects of simvastatin, 80 mg/day, on plasma lipid and lipoprotein levels and on the metabolism of apolipoprotein B (apoB) in VLDL, intermediate density lipoprotein (IDL), and LDL and of triglycerides (TGs) in VLDL. Simvastatin therapy decreased TG, cholesterol, and apoB significantly in VLDL, IDL, and LDL. These effects were associated with reduced production of LDL-apoB, mainly as a result of reduced secretion of apoB-lipoproteins directly into the LDL density range. Statin therapy also reduced hepatic production of VLDL-TG. There were no effects of simvastatin on the fractional catabolic rates of VLDL-apoB or -TG or LDL-apoB. The basis for decreased VLDL-TG secretion during simvastatin treatment is not clear, but recent studies suggest that statins may activate peroxisomal proliferator-activated receptor alpha (PPARalpha). Activation of PPARalpha could lead to increased hepatic oxidation of fatty acids and less synthesis of TG for VLDL assembly.  相似文献   

7.
The first results of the PREDIMED (PREvencion con Dieta MEDiterranea) randomized trial, after 3-month intervention, showed that the Mediterranean Diet (MD), supplemented with either virgin olive oil (VOO) or nuts, reduced systolic blood pressure, serum cholesterol and triacylglycerol (TG) concentrations and increased high-density lipoprotein (HDL)-cholesterol when compared to a control (low-fat diet) group. Serum TG levels are an independent risk factor for coronary heart disease and are strongly determined by very low-density lipoprotein (VLDL) composition, which can be specifically modified by dietary lipid source. Within the context of the PREDIMED study, we assessed the VLDL composition in 50 participants after 3 months of intake of two MD, supplemented with VOO or nuts, compared with a low-fat diet. Total and low-density lipoprotein cholesterol concentrations were reduced in subjects on the MD+nuts, whereas HDL-cholesterol increased after consumption of the MD+VOO. Serum TG concentrations were significantly lowered in both intervention groups (either the MD+nuts or MD+VOO). However, only the MD+VOO reduced the VLDL-cholesterol and VLDL-TG content and the TG/apolipoprotein B ratio in VLDL, which was used to estimate particle size. Although VLDL-TG fatty acids were very slightly modified, VLDL-TG molecular species in VLDL after consumption of the MD+nuts were characterized by a higher presence of linoleic acid (18:2, n-6), whereas after the intake of MD+VOO, they were rich in oleic acid (18:1, n-9). Therefore, we conclude that the reduction in systemic TG concentrations observed after consumption of the MD may be explained by reduction of the lipid core of VLDL and a selective modification of the molecular species composition in the particle.  相似文献   

8.
The effect of apolipoprotein (apo) E genotype on apoB-100 metabolism was examined in three normolipidemic apoE2/E2, five type III hyperlipidemic apoE2/E2, and five hyperlipidemic apoE3/E2 subjects using simultaneous administration of 131I-VLDL and 125I-LDL, and multi-compartmental modeling. Compared with normolipidemic apoE2/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased plasma and VLDL cholesterol, plasma and VLDL triglycerides, and VLDL and intermediate density lipoprotein (IDL) apoB concentrations (P < 0.05). These abnormalities were chiefly a consequence of decreased VLDL and IDL apoB fractional catabolic rate (FCR). Compared with hyperlipidemic E3/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased IDL apoB concentration and decreased conversion of IDL to LDL particles (P < 0.05). In a pooled analysis, VLDL cholesterol was positively associated with VLDL and IDL apoB concentrations and the proportion of VLDL apoB in the slowly turning over VLDL pool, and was negatively associated with VLDL apoB FCR after adjusting for subject group. VLDL triglyceride was positively associated with VLDL apoB concentration and VLDL and IDL apoB production rates after adjusting for subject group. A defective apoE contributes to altered lipoprotein metabolism but is not sufficient to cause overt hyperlipidemia. Additional genetic mutations and environmental factors, including insulin resistance and obesity, may contribute to the development of type III hyperlipidemia.  相似文献   

9.
Type III hyperlipoproteinemia (HLP) is a genetic disorder characterized by accumulation of remnant lipoproteins in the plasma and development of premature atherosclerosis. Although receptor binding-defective forms of apolipoprotein (apo) E are the common denominator in this disorder, a number of apparent paradoxes concerning its pathogenesis still exist. However, studies in transgenic animals are resolving the mechanisms underlying this disorder. PARADOX I: Defective apoE (commonly apoE2) is essential but not sufficient to cause overt type III HLP. In fact, most apoE2 homozygotes are hypolipidemic. Studies in apoE2 transgenic models have demonstrated the impact of other genes or hormones in converting the hypolipidemia to hyperlipidemia. PARADOX II: Among apoE2 homozygotes, men are more susceptible than women to type III HLP. Transgenic studies have shown that estrogen affects both LDL receptor expression and lipolytic processing, explaining the resistance of women to this disorder until after menopause. PARADOX III: ApoE deficiency is associated with hypercholesterolemia, whereas the type III HLP phenotype is characterized by both hypercholesterolemia and hypertriglyceridemia. The hypercholesterolemia is caused by impaired receptor-mediated clearance, whereas the hypertriglyceridemia is caused primarily by impaired lipolytic processing of remnants and increased VLDL production associated with increased levels of apoE. PARADOX IV: ApoE2 is associated with recessive inheritance of this disorder, whereas other defective apoE variants are associated with dominant inheritance. Determinants of the mode of inheritance are the differential binding of apoE variants to the LDL receptor versus the HSPG/LRP complex and the preference of certain apoE variants for specific lipoproteins. Thus, the pathogenesis of this sometimes mysterious disorder has been clarified.  相似文献   

10.
Male rats were fed a cholesterol-free diet or the same diet supplemented with either 0.05, 0.1, 0.25, 0.5, 1, or 2% C for 21 days to investigate the effects of cholesterol on secretion of very low density lipoprotein (VLDL). Cholesterol feeding increased plasma and hepatic concentrations of triglyceride (TG) and cholesteryl esters (CE) in a dose-dependent manner. Plasma VLDL and low density lipoprotein (LDL) lipids were elevated by cholesterol feeding, while the high density lipoprotein (HDL) lipids were reduced. The secretion of the VLDL by perfused livers from these cholesterol-fed rats was examined to establish the relationship between the accumulation of lipids in the liver and the concurrent hyperlipemia. Liver perfusions were carried out for 4 h with a medium containing bovine serum albumin (3% w/v), glucose (0.1% w/v), bovine erythrocytes (30% v/v), and a 10-mCi 3H2O initial pulse. Oleic acid was infused to maintain a concentration of 0.6 mM. Hepatic secretion of VLDL-TG, PL (phospholipid), free cholesterol (FC), and CE increased in proportion to dietary cholesterol and was maximal at 0.5% cholesterol in these experiments in which TG synthesis was stimulated by oleic acid. Secretion of VLDL protein and apoB by the perfused liver was also increased. The molar ratios of surface (sum of PL and cholesterol) to core (sum of TG and CE) lipid components of the secreted VLDL, regardless of cholesterol feeding, were the same, as were the mean diameters of the secreted particles. The molar ratios of surface to core lipid of VLDL isolated from the plasma also were not affected by cholesterol feeding. During perfusion with oleic acid of livers from the rats fed the higher levels of cholesterol, the hepatic concentration of CE decreased, while the level of TG was not changed. We conclude that the hypercholesterolemia and hypertriglyceridemia that occur in vivo from cholesterol feeding, concurrent with accumulation of CE and TG in the liver, must result, in part, from increased hepatic secretion of all VLDL lipids and apoB. The VLDL particles produced by the liver of the cholesterol-fed rat are assembled without modification of the surface lipid ratios (PL/FC), but contain a greater proportion of cholesteryl esters compared to triglyceride in the core, because of the stimulated transport of CE from the expanded pool in the liver.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.

Background

The liver secretes very-low-density lipoproteins (VLDLs) and plays a key role in lipid metabolism. Plasma total triglyceride (TG) level variations have been studied in patients with hepatitis C virus (HCV)-related chronic hepatitis (CH-C). However, the results of these studies are variable. A homogenous assay protocol was recently proposed to directly measure the TG content in VLDL (VLDL-TG) and VLDL remnants.

Methodology/Principal Findings

Using the assay protocol, we determined serum VLDL-TG levels in 69 fasting patients with biopsy-proven HCV-related chronic liver disease and 50 healthy subjects. Patients were classified into stages F0–F4 using the 5-point Desmet scale. Serum total TG levels in patients with non-cirrhotic (F1–F3) CH-C did not demonstrate significant differences compared with healthy subjects, but serum VLDL-TG levels did demonstrate significant differences. Mean serum VLDL-TG levels tended to decrease with disease progression from F1 to F4 (cirrhosis). Compared with healthy subjects, serum non-VLDL-TG levels significantly increased in patients with stages F2 and F3 CH-C; however, we observed no significant difference in patients with liver cirrhosis. Furthermore, the serum VLDL-TG/non-VLDL-TG ratio, when taken, demonstrated a significant decrease in patients with CH-C from the mildest stage F1 onward.

Conclusions/Significance

The decrease in serum VLDL-TG levels was attenuated by increase in non-VLDL-TG levels in patients with non-cirrhotic CH-C, resulting in comparable total TG levels. Results of previous studies though variable, were confirmed to have a logical basis. The decrease in the serum VLDL-TG/non-VLDL-TG ratio as early as stage F1 demonstrated TG metabolic alterations in early stages of CH-C for the first time. The involvement of TG metabolism in CH-C pathogenesis has been established in experimental animals, while conventional TG measurements are generally considered as poor indicators of CH-C progression in clinical practice. The serum VLDL-TG/non-VLDL-TG ratio, which focuses on TG metabolic alterations, may be an early indicator of CH-C.  相似文献   

12.
The peroxisome proliferator-activated receptor alpha (PPARα) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of fenofibrate on VLDL production are controversial, we aimed to investigate in (more) detail the mechanism underlying the TG-lowering effect by studying VLDL-TG production and clearance using APOE*3-Leiden.CETP mice, a unique mouse model for human-like lipoprotein metabolism. Male mice were fed a Western-type diet for 4 weeks, followed by the same diet without or with fenofibrate (30 mg/kg bodyweight/day) for 4 weeks. Fenofibrate strongly lowered plasma cholesterol (−38%) and TG (−60%) caused by reduction of VLDL. Fenofibrate markedly accelerated VLDL-TG clearance, as judged from a reduced plasma half-life of glycerol tri[3H]oleate-labeled VLDL-like emulsion particles (−68%). This was associated with an increased post-heparin lipoprotein lipase (LPL) activity (+110%) and an increased uptake of VLDL-derived fatty acids by skeletal muscle, white adipose tissue, and liver. Concomitantly, fenofibrate markedly increased the VLDL-TG production rate (+73%) but not the VLDL-apolipoprotein B (apoB) production rate. Kinetic studies using [3H]palmitic acid showed that fenofibrate increased VLDL-TG production by equally increasing incorporation of re-esterified plasma fatty acids and liver TG into VLDL, which was supported by hepatic gene expression profiling data. We conclude that fenofibrate decreases plasma TG by enhancing LPL-mediated VLDL-TG clearance, which results in a compensatory increase in VLDL-TG production by the liver.  相似文献   

13.
Apolipoprotein E (apoE) is important in the modulation of the catabolism of chylomicron and very low density lipoprotein (VLDL) remnants. ApoE has three major genetically determined isoproteins in plasma, designated apoE-2, apoE-3 and apoE-4, with homozygosity for the allele coding for apoE-2 being associated with dysbetalipoproteinemia or type III hyperlipoproteinemia (HLP). We describe a new variant of apoE, apoE-1Harrisburg, which is, in contrast to apoE-2, dominantly associated with type III HLP. Five of twelve members of the affected kindred are heterozygous for the mutant form of apoE, and four of the five have type III HLP, while the fifth member has dysbetalipoproteinemia on diet therapy. Neuraminidase digestion, which removes charged sialic acid residues, did not alter the electrophoretic position of the apoE-1Harrisburg isoprotein, indicating that the altered charge of apoE-1Harrisburg was not due to sialic acid addition to the apolipoprotein. Cysteamine modification, which adds a positively charged group to cysteine, resulted in a shift of apoE-1Harrisburg from the E-1 to the E-2 isoform position, indicating that there is one cysteine in apoE-1Harrisburg as is the case for apoE-3. These results are consistent with apoE-1Harrisburg originating in the allele for apoE-3 with the mutation leading to a negative two-unit charge shift. The definitive identification of a kindred with an apoE variant, apoE-1Harrisburg, dominantly associated with dysbetalipoproteinemia and type III HLP provides a unique opportunity to gain important insights into the structure-function requirements of the E apolipoprotein as well as the mechanisms by which apoE modulates lipoprotein metabolism.  相似文献   

14.
《Journal of lipid research》2017,58(6):1214-1220
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.  相似文献   

15.
Effects of fish oil on VLDL triglyceride kinetics in humans   总被引:8,自引:0,他引:8  
Dietary n-3 fatty acids (FAs) found in fish oils markedly lower plasma triglyceride (TG) and very low density lipoprotein (VLDL) levels in both normal and hypertriglyceridemic subjects. The present study examined the mechanism of this effect. Ten subjects with widely different plasma triglyceride levels (82 to 1002 mg/dl) were fed metabolically controlled diets containing 20% fat. The control diet contained a blend of cocoa butter and peanut oil (P/S = 0.8). The test diet contained fish oil (P/S = 1.1) and provided 10-17 g of n-3 FAs per day (depending on calorie intake). After 3 to 5 weeks of each diet, the kinetics of VLDL-TG were determined over a 48-h period after the injection of [3H]glycerol. The fish oil diet reduced the VLDL-TG synthetic rate from 23 +/- 14.3 (mean +/- SD) to 12.6 +/- 7.5 mg/h per kg ideal weight (P less than 0.005) and increased the fractional catabolic rate (FCR) for VLDL-TG from 0.23 +/- 0.12 to 0.38 +/- 0.16 h -1 (P less than 0.005). At the same time, there was a 66% reduction of plasma triglyceride levels, resulting largely from a 78% decrease in VLDL-TG levels (398 +/- 317 to 87 +/- 77 mg/dl; P less than 0.005). There was a strong correlation (r = 0.83; P less than 0.01) between the change in synthetic rates and pool sizes, but there was no correlation (r = 0.24; NS) between changes in FCRs and pool sizes. The VLDL cholesterol: triglyceride ratio increased during the n-3 diet suggesting that smaller VLDL particles were present. These particles would be expected to leave the VLDL fraction more rapidly than larger particles producing a higher FCR. We conclude that the hypotriglyceridemic effect of fish oil appears to be caused primarily by an inhibition of very low density lipoprotein-triglyceride synthesis, but an additional, independent effect upon VLDL catabolism cannot be ruled out.  相似文献   

16.
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E−/− mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly increased plasma cholesterol, triglyceride, and apoE levels, caused accumulation of apoE in VLDL/IDL/LDL region, and promoted the formation of discoidal HDL. Co-expression of apoE4[R142C] with lecithin cholesterol acyltransferase (LCAT) or lipoprotein lipase (LPL) in apoE−/− mice partially corrected the apoE4[R142C]-induced dyslipidemia. High doses of C-terminally truncated apoE4[R142C]-202 partially cleared cholesterol in apoE−/− mice and promoted formation of discoidal HDL. The findings establish that apoE4[R142C] causes accumulation of apoE in VLDL/IDL/LDL region and affects in vivo the activity of LCAT and LPL, the maturation of HDL, and the clearance of triglyceride-rich lipoproteins. The prevention of apoE4[R142C]-induced dyslipidemia by deletion of the 203-299 residues suggests that, in the full-length protein, the R142C substitution may have altered the conformation of apoE bound to VLDL/IDL/LDL in ways that prevent triglyceride hydrolysis, cholesterol esterification, and receptor-mediated clearance in vivo.  相似文献   

17.
The role of purified plasma lipid transfer protein complexes in determining the particle size distribution of human plasma high density lipoproteins (HDL) was examined in vitro. Incubation of HDL2 or HDL3, isolated from normolipemic subjects with very low density lipoproteins (VLDL) or VLDL-remnants and lipid transfer protein complex had little or no effect on HDL particle size. In contrast, HDL isolated from patients with hypertriglyceridemia, designated HDL3D, showed speciation of particle size distribution when incubated with VLDL-remnants and the transfer protein. Incubation of HDL3D with VLDL-remnants and lipid transfer complex resulted in the production of two particles of radius 4.3 and 3.7 nm; incubation with VLDL or in the absence of the transfer protein did not result in a redistribution of particle size. We suggest that the action of lipid transfer protein complex on triacylglycerol-rich lipoprotein remnants and HDL accounts for the low levels of HDL-cholesterol observed in subjects with severe hypertriglyceridemia.  相似文献   

18.
To discover the alterations in lipid metabolism linked to postexercise hypotriglyceridemia, we measured lipid kinetics, lipoprotein subclass distribution and lipid transfer enzymes in seven healthy, lean, young men the day after 2 h of cycling and rest. Compared with rest, exercise increased fatty acid rate of appearance and whole body fatty acid oxidation by approximately 65 and 40%, respectively (P < 0.05); exercise had no effect on VLDL-triglyceride (TG) secretion rate, increased VLDL-TG plasma clearance rate by 40 +/- 8%, and reduced VLDL-TG mean residence time by approximately 40 min and VLDL-apolipoprotein B-100 (apoB-100) secretion rate by 24 +/- 8% (all P < 0.05). Exercise also reduced the number of VLDL but almost doubled the number of IDL particles in plasma (P < 0.05). Muscle lipoprotein lipase content was not different after exercise and rest, but plasma lipoprotein lipase concentration increased by approximately 20% after exercise (P < 0.05). Plasma hepatic lipase and lecithin:cholesterol acyltransferase concentrations were not affected by exercise, whereas cholesterol ester transfer protein concentration was approximately 10% lower after exercise than after rest (P = 0.052). We conclude that 1) greater fatty acid availability after exercise does not stimulate VLDL-TG secretion, probably because of the increase in fatty acid oxidation and possibly also fatty acid use for restoration of tissue TG stores; 2) reduced secretion of VLDL-apoB-100 lowers plasma VLDL particle concentration; and 3) increased VLDL-TG plasma clearance maintains low plasma TG concentration but is not accompanied by similar increases in subsequent steps of the delipidation cascade. Acutely, therefore, the cardioprotective lowering of plasma TG and VLDL concentrations by exercise is counteracted by a proatherogenic increase in IDL concentration.  相似文献   

19.
Dyslipidemia, manifested by increased plasma triglyceride (TG), increased total and LDL-cholesterol concentrations and decreased HDL-cholesterol concentration, is an important risk factor for cardiovascular disease. Premenopausal women have a less atherogenic plasma lipid profile and a lower risk of cardiovascular disease than men, but this female advantage disappears after menopause. This suggests that female sex steroids affect lipoprotein metabolism. The impact of variations in the availability of ovarian hormones during the menstrual cycle on lipoprotein metabolism is not known. We therefore investigated whether very-low-density lipoprotein (VLDL)-TG and VLDL-apolipoprotein B-100 (apoB-100) kinetics are different during the follicular (FP) and luteal phases (LP) of the menstrual cycle. We studied seven healthy, premenopausal women (age 27 +/- 2 yr, BMI 25 +/- 2 kg/m(2)) once during FP and once during LP. We measured VLDL-TG, VLDL-apoB-100, and plasma free fatty acid (FFA) kinetics by using stable isotope-labeled tracers, VLDL subclass profile by nuclear magnetic resonance spectroscopy, whole body fat oxidation by indirect calorimetry, and the plasma concentrations of lipoprotein lipase (LPL) and hepatic lipase (HL) by ELISA. VLDL-TG and VLDL-apoB-100 concentrations in plasma, VLDL-TG and VLDL-apoB-100 secretion rates and mean residence times, VLDL subclass distribution, FFA concentration and rate of appearance in plasma, whole body substrate oxidation, and LPL and HL concentrations in plasma were not different during the FP and the LP. We conclude that VLDL-TG and VLDL-apoB-100 metabolism is not affected by menstrual cycle phase.  相似文献   

20.
The oxysterol-activated nuclear receptor liver X receptor alpha (LXRalpha) has been implicated in the control of both cholesterol and fatty acid metabolism. In this study, we have evaluated the effects of excess dietary cholesterol on hepatic cholesterol metabolism, lipogenesis, and VLDL production in homozygous (Lxralpha(-/-)), heterozygous (Lxralpha(+/-)), and wild-type mice. Mice were fed either chow or a cholesterol-enriched diet (1%, w/w) for 2 weeks. On the high-cholesterol diet, fractional cholesterol absorption was higher in Lxralpha(-/-) mice than in controls, leading to delivery of more dietary cholesterol to the liver. Lxralpha(-/-) mice were not able to induce expression of hepatic Abcg5/Abcg8, and massive accumulation of free cholesterol and cholesteryl esters (CEs) occurred. Interestingly, despite the inability to upregulate Abcg5/Abcg8, the highly increased hepatic free cholesterol content did stimulate biliary cholesterol output in Lxralpha(-/-) mice. Hepatic cholesterol accumulation was accompanied by decreased hepatic expression of lipogenic genes, probably caused by impaired sterol-regulatory element binding protein 1c processing, lower hepatic triglyceride (TG) contents, strongly reduced plasma TG concentrations (-90%), and reduced VLDL-TG production rates (-60%) in Lxralpha(-/-) mice. VLDL particles were smaller and CE-enriched under these conditions. Lxralpha deficiency did not affect VLDL formation under chow-fed conditions. Hepatic stearyl coenzyme A desaturase 1 expression was decreased dramatically in Lxralpha(-/-) mice and did not respond to cholesterol feeding, but fatty acid profiles of liver and VLDL were only slightly different between Lxralpha(-/-) and wild-type mice. Our data indicate that displacement of TGs by CEs during the VLDL assembly process underlies hypotriglyceridemia in cholesterol-fed Lxralpha(-/-) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号