首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of degradation of nonionic surfactants (NISA) in a model purification plant of an original design demonstrated a high rate and depth of degradation processes compared with periodic cultivation of free or immobilized degrading strains. Virtually complete primary degradation (99–99.5%) with destruction of the oxyethyl moiety of the molecule was observed. In addition, NISA molecules were degraded to a greater extent, including considerable degradation of the hydrocarbon radical, partial degradation of aromatic structures in Neonol, and utilization of biologically “unyielding” fractions of commercial NISA preparations, i.e., polyethylene glycol (PEG) and long-chain fractions of polymer homologues.  相似文献   

2.
A study was conducted to determine the location and distribution of PAH and PAH-degrading bacteria in different aggregate size fractions of an industrially polluted soil. The estimation of PAH-degrading bacteria using an MPN microplate technique indicated that these bacteria are most numerous in the aggregate size fractions corresponding to fine silt (2–20m) and clay(<2m) compared to larger fractions or unfractionated soil.PAH concentrations were also highest in the aggregate size fraction corresponding to fine silt. Similar results were found in a spiked soil (incubated for 6 months) with similar carbonated minerals. Transmission electron microscopy observations showed that the autochtonous PAH-degrading bacteria were embedded in the aggregates where PAHs were abundant. In spite of this extensive co-localisation PAH degradation was limited during 6 months incubation. This indicates that factors other than spatial distribution and PAH degrading ability control degradation rates. The fine silt fraction of the industrial soil had an elevated C/N ratio (35) compared to the clay fraction (C/N: 16). Thus the fraction which assumably had the highest specific surface area contained less PAH but similar numbers of PAH-degraders. N thus seem to play an important role in the long term, but as PAH degradation was low in fine size fractions, other sources/factors were probably limiting (easily degradable C, P org, O2 etc.). Based on these findings, soil particle organization and structure of soil aggregates appear to be important for the characterization of a polluted soil (localization and sequestration). Manipulations that modify aggregation in polluted soils could thus potentially influence the accessibility and biodegradability of PAHs.  相似文献   

3.
A study was made of the action of novobiocin on degradation and repair events in supercoiled nuclear DNA from three thymocyte fractions obtained by ficoll-paque gradient sedimentation. When added before gamma-irradiation novobiocin (1.9 mg/ml) exerted a radioprotective effect during the "second wave" of supercoiled DNA degradation. It is suggested that this effect may be due to the inhibition of DNA topoisomerase II.  相似文献   

4.
Peptidase(s) activity of different subcellular fractions isolated from cortex, hippocampus, midbrain, thalamus with hypothalamus, cerebellum and medulla oblongata exerted against less than Glu SP6-11 (3H-Phen8) was evaluated in "low-ionic" and similar (in composition) to both extracellular and intracellular conditions. The incubation of less than Glu SP6-11 with different fractions leaves the hexapeptide undegraded in the studied conditions in most cases. Peptidases activity results in the formation of the first of all C-terminal and exceptionally "internal" labelled products. Labelled N-terminal products were not seen. The most effective degradation in vitro of less than Glu SP6-11 takes place, in the majority of cases, in "low ionic" conditions when compared to those similar to extra or intracellular ones. The biggest total (per 1 g of wet mass) and specific activities against less than Glu SP6-11 can be shown in the hippocampus areas.  相似文献   

5.
6.
Dissolved organic matter (DOM) in the waters from Lake Biwa, Japan was fractionated using tangential flow ultrafiltration, and subsequently characterized by fluorescence properties and amino acids. While major dissolved organic carbon (DOC), UV absorbance (Abs), humic-like fluorescence (Flu) and total hydrolyzed amino acids (THAA) occurred in the less than 5 kDa molecular size fraction, they were not evenly distributed among various molecular size fractions. Flu/Abs ratios increased, and THAA/DOC ratios decreased with decreasing molecular size. Humic-like fluorescence occurred in all molecular size fractions, but protein-like fluorescence only occurred in the 0.1 m-GF/F fraction. Subtle differences in amino acid compositions (both individuals and functional groups) were observed between various molecular size fractions, this may indicate the occurrence of DOM degradation from higher to lower molecular weight. The results reported here have significance for further understanding the sources and nature of DOM in aquatic environments.  相似文献   

7.
Isolated sarcoplasmic reticulum vesicles from rabbit white muscle were separated into a light (15--20% of total microsomes) and a heavy (80--85%) fraction by density gradient centifugation. The ultrastructure, chemical composition, enzymic activities and localization of membrane components in the vesicles of both fractions were investigated. From the following results it was concluded that both fractions are derived from the membranes of the sarcoplasmic reticulum system of the muscle: (i) The protein pattern of both fractions is essentially the same, except for different ratios of acidic, Ca2+-binding proteins. (ii) The 105000 dalton protein of the light fraction cross-reacts immunologically with the Ca2+-dependent ATPase of the heavy fraction. (iii) Ca2+-dependent ATPase, although of different specific activity, is found in both fractions. After rendering the vesicles leaky, specific activities in both fractions reach the same value. The light fraction was found to consist of "inside-out" vesicles by the following criteria: (i) No Ca2+ accumulation can be measured and the Ca2+-dependent ATPase activity is low and variable. (ii) The rate of trypsin digestion is lower and, compared to the heavy microsomes, a different ratio of degradation products is obtained. (iii) The sarcoplasmic reticulum membrane has a highly asymmetrical lipid distribution. This distribution of aminophospholipids is opposite to that in vesicles of heavy fraction. The light sarcoplasmic reticulum fraction has a higher phospholipid to protein ratio than the heavy one. This is consistent with the possibility that the two fractions derive from different parts of the sarcoplasmic reticulum system.  相似文献   

8.
Regulation of the matrix metalloproteinases (MMPs), the major mediators of extracellular matrix (ECM) degradation, is crucial to regulate ECM proteolysis, which is important in metastasis. This study examined the effects of 3 flavonoid-enriched fractions (a crude fraction, an anthocyanin-enriched fraction, and a proanthocyanidin-enriched fraction), which were prepared from lowbush blueberries (Vaccinium angustifolium), on MMP activity in DU145 human prostate cancer cells in vitro. Using gelatin gel electrophoresis, MMP activity was evaluated from cells after 24-hr exposure to blueberry fractions. All fractions elicited an ability to decrease the activity of MMP-2 and MMP-9. Of the fractions tested, the proanthocyanidin-enriched fraction was found to be the most effective at inhibiting MMP activity in these cells. No induction of either necrotic or apoptotic cell death was noted in these cells in response to treatment with the blueberry fractions. These findings indicate that flavonoids from blueberry possess the ability to effectively decrease MMP activity, which may decrease overall ECM degradation. This ability may be important in controlling tumor metastasis formation.  相似文献   

9.
Bacitracin was found to be an effective inhibitor of the invitro degradation of both thyrotropin releasing factor1 (TRF) and luteinizing hormone releasing factor (LRF) by guinea pig hypothalamic and whole brain homegenates and rat hypothalamic homogenates and subcellular fractions. Bacitracin was effective in inhibiting the degradation of TRF and LRF, as determined by radioimmunoassay, where it exhibited no interference with the assays. Kinetic studies of the degradation of exogenous synthetic [3H]-TRF demonstrated non-competitive inhibition by bacitracin with Ki = 1.9 × 10?5 M, while studies on the degradation of [3H] LRF indicated competitive inhibition with Ki = 1.7 × 10?5 M. Electrophoretic and amino acid analysis revealed that bacitracin itself was not degraded during the course of the invitro incubation.  相似文献   

10.
1. The inactivation of cytosol enzymes in liver extracts was carried out by several subcellular fractions, with plasma membranes having the highest specific activity. Rough and smooth microsomal fractions were both active, whereas lysosmal inactivation capacity appeared to be derived entirely from contaminating plasma-membrane fragments. 2. Inactivation capacity in liver fractions was derived from parenchymal cells. Of the non-liver cells tested, plasma membranes from H35 hepatoma cells were able to inactivate glucose 6-phosphate dehydrogenase (EC 1.1.1.49), adipocyte "ghosts" showed slight activity and erythrocyte and reticulocyte "ghosts" were inactive. 3. Liposomes prepared from pure lipids with net negative, positive or neutral charge did not possess inactivation capacity. 4. Liver plasma-membrane inactivation capacity was destroyed by heating at 50 degrees C. 5. Inactivation factor solubilized from membranes by trypsin plus Triton X-100 treatment was partially purified by (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography and hydroxyapatite chromatography. 6. Partially purified inactivation factor analysed by gel electrophoresis gave a major protein band that co-migrated with capacity for inactivation of glucose 6-phosphate dehydrogenase. 7. It is concluded that inactivation factor is a membrane protein whose intracellular distribution and other properties are consistent with a possible role for this activity in the initial step of protein degradation.  相似文献   

11.
The turnover of rat liver lysosomal proteins was studied by a double isotope-labeling technique. The cellular fractions investigated included soluble lysosomal proteins, lysosomal membrane proteins, highly purified lysosomal beta-glucuronidase, and for comparison, microsomal proteins and soluble cytoplasmic proteins. Both "normal" lysosomes and Triton WR-1339-filled lysosomes (tritosomes) were studied, with similar results. It was found that (a) the turnover rate of lysosomal proteins, of both the soluble and membranous compartments, was very similar to that of the proteins of the microsomal and soluble cytoplasmic fractions, and (b) the turnover rate of lysosomal proteins was asynchronous. The latter conclusion was based on two lines of evidence: (a) lysosomal beta-glucuronidase had a distinctly slower turnover rate than the average rate of the soluble lysosomal proteins, and (b) subunits of the proteins of the soluble lysosomal fraction as separated by sodium dodecyl sulfate. Sephadex G-200 gel filtration showed different rates of degradation.  相似文献   

12.
Our objective was to know how insulin is processing in mitochondria; if IDE is the only participant in mitochondrial insulin degradation and the role of insulin degradation on IDE accumulation in mitoplasts. Mitochondria and its fractions were isolated as described by Greenwalt. IDE was purified and detected in immunoblot with specific antibodies. High insulin degradation was obtained through addition to rat’s diet of 25 g/rat of apple and 10 g/rat of hard-boiled eggs, 3 days a week. Mitochondrial insulin degradation was assayed with 5 % TCA, insulin antibody or Sephadex G50 chromatography. Degradation was also assayed 60 min at 37 °C in mitochondrial fractions (IMS and Mx) with diet or not and without IDE. Degradation in fractions precipitated with ammonium sulfates (60–80 %) were studied after mitochondrial insulin incubation (1 ng. insulin during 15 min, at 30 °C) or with addition of 2.5 mM ATP. Supplementary diet increased insulin degradation. High insulin did not increase mitoplasts accumulation and did not decrease mitochondrial degradation. High insulin and inhibition of degradation evidence insulin competition for a putative transport system. Mitochondrial incubation with insulin increased IDE in matrix as observed in immunoblot. ATP decreased degradation in Mx and increased it in IMS. Chromatography of IMS demonstrated an ATP-dependent protease that degraded insulin, similar to described by Sitte et al. Mitochondria participate in insulin degradation and the diet increased it. High insulin did not accomplish mitochondrial decrease of degradation or its accumulation in mitoplasts. Mitochondrial incubation with insulin increased IDE in matrix. ATP suggested being a regulator of mitochondrial insulin degradation.  相似文献   

13.
The degradation kinetics of the principal polysaccharides (cellulose and xylan) of the agro-fibre crop Arundo donax L. (giant reed) during ethanol–alkali delignification is reported. Based on the properties of a multi-component reaction system, the degradation kinetics of both polysaccharides was accurately described in terms of two simultaneous irreversible first-order reactions corresponding to removal of two kinetically homogeneous fractions. The moderate cellulose losses during pulping (about 4.5%) result mainly from the removal of the more reactive cellulose fraction, that accounted for 4% of initial cellulose. The bulk of the cellulose (96%) degrades slowly with three orders lower rate with pulping progress. The apparent activation energy of cellulose fractions degradation was estimated as 105.2 and 106.5 kJ mol−1, respectively. Substantial loss of xylan during pulping (about 55%, as a homoxylan) is caused by fast removal of the first very reactive fraction, covering about 48% of total xylan. The degradation rate of the second xylan fraction is only one order higher of the bulk cellulose degradation. The activation energy of xylan fractions degradation was found as 74.4 and 140.9 kJ mol−1, respectively.  相似文献   

14.
Chick lens epithelial cells were cultured on plastic and type IV collagen substrata, and the confluent cultures were labeled continuously with [35S]sulfate for 20 h. Intact lenses were also labeled in the same way. 35S-Proteoglycans isolated from those cultures were compared for their molecular sizes and glycosaminoglycan compositions. The results have shown that: 1) Proteoglycans synthesized by cells on type IV collagen were significantly smaller than those by cells on plastic. 2) Proteoglycans of intact lens showed a broad distribution of molecular size and contained a high proportion of chondroitin sulfate in the medium fraction compared to those of the two cell cultures. In order to explain such differences between proteoglycans from cultures, label-chase experiments with [35S]sulfate were done for proteoglycans synthesized. 35S-Proteoglycans isolated at each chase time 0, 2.5, and 17 h) were compared and the following results were found: 1) The cell layers of both "plastic" and "type IV collagen" cultures contained glycosaminoglycan species predominantly at each chase time rather than proteoglycans. 2) Changes in the glycosaminoglycan compositions of medium fractions of cell cultures were observed during the chase period; in medium of the "plastic" culture, proteoheparan sulfate increased with chase time, whereas in medium of the "type IV collagen" culture, chondroitin sulfate glycosaminoglycan (not proteoglycan) increased with chase time. 3) In intact lens culture, lens capsule fraction at every chase time contained a proteoglycan unique in molecular size, which was not found in cell culture fractions. 4) All fractions from intact lens cultures contained a higher content of chondroitin sulfate at every chase time than the respective fractions from cell cultures. These results suggest that adhesion of the cells to type IV collagen or lens capsule influences the degradation and secretion of proteoglycans. In addition, they can account partially for the above-described differences in molecular sizes and glycosaminoglycan compositions between 35S-proteoglycans from various cultures continuously labeled with [35S]sulfate.  相似文献   

15.
A number of antitumor drugs act via the oxidation of nuclear material in the tumor cell. It is therefore important to know if tumor cells can effectively and precisely cope not only with oxidatively induced DNA damage, but also with nuclear protein oxidation. In this study, we investigated the endogenous degradation of oxidatively damaged histones in K562 human leukemic cells after oxidative challenge and demonstrated a link to the overall cellular stress response pathways by poly-ADP-ribose-polymerase (PARP). After an oxidative challenge, endogenous nuclear protein degradation, as well as histone degradation, was enhanced. Among the histone fractions, histone H1 revealed the highest degradation rate, and more than 85% of the total degraded H1 disappeared in the first 30 min after oxidative challenge. Short-term degradation of histones up to 30 min, as well as long-term degradation up to 48 h after oxidative challenge, was significantly reduced in the presence of the PARP inhibitor 3-aminobenzamide, and nearly completely abrogated by the selective proteasome inhibitor lactacystin. Immunoprecipitation experiments indicated that the proteasome specifically degraded oxidized histones. Thus, we show that the nuclear proteosome system in tumor cells is capable of preventing the accumulation of oxidized proteins in this compartment and may suggest further treatment strategies to effectively interfere with the protein "repair" and replacement strategies of tumor cells.  相似文献   

16.
The aim of our study was to follow the transfer of 14C-labeled ryegrass between size and density fractions of soil organic matter in a sandy and a loam soil. Our hypotheses were a) that the applied 14C would be transferred from light and soluble fractions to intermediate and heavy macroorganic matter fractions (>150 m) and finally become stabilized in microaggregates (<150 m), and b) that the physical protection of 14C associated with microaggregates against decomposition would decrease with increasing saturation of the microaggregates with soil organic matter. Generally, the hypotheses were confirmed. Immediately after application most of the label was present in the soluble and light macroorganic matter fractions. Newly synthesized microbial biomass fed on the labeled components of the fractions. The amounts of 14C in the soluble and light macroorganic matter fractions decreased rapidly, while the amounts of 14C in the intermediate and heavy macroorganic matter fractions and in microaggregates remained more or less stable. At the end of the incubation most of the residual soil 14C was found in the microaggregates. In the sandy soil 14C was concentrated in the 20–150 m fraction, whereas in the loam a larger proportion was present in the <20 m fraction.The mineralization rates of 14C-labeled material were similar in the light intermediate and heavy fractions of macroorganic matter and in the microaggregates 0 and 180 days after the application of 14C-labeled ryegrass. In all fractions, 14C mineralized more rapidly than total C. The results indicate that considerable amounts of 14C must have transferred from the soluble and light macroorganic matter fractions and newly synthesized microbial biomass to the intermediate and heavy macroorganic matter fractions and the microaggregates, and that 14C was not yet physically protected against microbial degradation during the whole incubation period. The degree of physical protection of 14C against decomposition in the microaggregate fraction <20 m was negatively correlated with the degree of saturation of this particle size fraction with soil organic matter.  相似文献   

17.
We purified and identified the peptide YY (PYY) forms present and determined their levels from a portion of the canine ileum directly adjacent to the cecum by a new extraction method designed to prevent and evaluate degradation of endogenous peptides. We used three reverse phase chromatography steps with radioimmunoassay of fractions for PYY-like-immunoreactivity (PYY-LI). The purified fractions underwent intact protein/peptide mass spectrometry identification and sequencing (i.e. "top-down" MS analysis). This analysis confirmed the identity of a new form of PYY, PYY(1-36)-Gly, which co-elutes with PYY(1-36)-NH(2) through all three of separation steps used. The PYY(1-36)-Gly form represents approximately 20% of the total PYY found in this region of the canine intestine. In addition, we also found that the PYY(3-36)-NH(2) form represents 6% of the total PYY in the canine ileo-cecal junction. The physiological implication of the Gly-extended form of PYY(1-36) warrants further investigation.  相似文献   

18.
To assess the relative contributions of microbial groups (bacteria, protozoa, and fungi) in rumen fluids to the overall process of plant cell wall digestion in the rumen, representatives of these groups were selected by physical and chemical treatments of whole rumen fluid and used to construct an artificial rumen ecosystem. Physical treatments involved homogenization, centrifugation, filtration, and heat sterilization. Chemical treatments involved the addition of antibiotics and various chemicals to rumen fluid. To evaluate the potential activity and relative contribution to degradation of cell walls by specific microbial groups, the following fractions were prepared: a positive system (whole ruminal fluid), a bacterial (B) system, a protozoal (P) system, a fungal (F) system, and a negative system (cell-free rumen fluid). To assess the interactions between specific microbial fractions, mixed cultures (B+P, B+F, and P+F systems) were also assigned. Patterns of degradation due to the various treatments resulted in three distinct groups of data based on the degradation rate of cell wall material and on cell wall-degrading enzyme activities. The order of degradation was as follows: positive and F systems > B system > negative and P systems. Therefore, fungal activity was responsible for most of the cell wall degradation. Cell wall degradation by the anaerobic bacterial fraction was significantly less than by the fungal fraction, and the protozoal fraction failed to grow under the conditions used. In general, in the mixed culture systems the coculture systems demonstrated a decrease in cellulolysis compared with that of the monoculture systems. When one microbial fraction was associated with another microbial fraction, two types of results were obtained. The protozoal fraction inhibited cellulolysis of cell wall material by both the bacterial and the fungal fractions, while in the coculture between the bacterial fraction and the fungal fraction a synergistic interaction was detected.  相似文献   

19.
Stimulation of resting normal rat kidney fibroblasts, prelabeled with [3H]leucine, by platelet-derived growth factor (PDGF) caused inhibition of cellular protein degradation and a parallel increased nuclear translocation of 3H-labeled nonhistone proteins (3H-NHP) and DNA synthesis. Nuclear translocation of these proteins was independent of protein synthesis. Fractionation of the nuclear 3H-NHP in a pH gradient of 2.5-6.5 showed that the protein fractions with a high degree of proteolysis in resting cells corresponded to the protein fractions with a high extent of translocation in stimulated cells, suggesting that degradation and translocation of these proteins may be related. PDGF inhibited cellular uptake of [3H]chloroquine, suggesting that PDGF inhibits NHP degradation via the lysosomal pathway. These observations support the hypothesis that PDGF induces NHP translocation to the nucleus by inhibiting lysosomal degradation of these proteins.  相似文献   

20.
The specific accumulation of a hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of NCL (LINCL) is caused by a defect in the CLN2 gene product, tripeptidyl peptidase I (TPP-I). The data here show that TPP-I is involved in the initial degradation of subunit c in lysosomes and suggest that its absence leads directly to the lysosomal accumulation of subunit c. The inclusion of a specific inhibitor of TPP-I, Ala-Ala-Phe-chloromethylketone (AAF-CMK), in the culture medium of normal fibroblasts induced the lysosomal accumulation of subunit c. In an in vitro incubation experiment the addition of AAF-CMK to mitochondrial-lysosomal fractions from normal cells inhibited the proteolysis of subunit c, but not the b-subunit of ATP synthase. The use of two antibodies that recognize the aminoterminal and the middle portion of subunit c revealed that the subunit underwent aminoterminal proteolysis, when TPP-I, purified from rat spleen, was added to the mitochondrial fractions. The addition of both purified TPP-I and the soluble lysosomal fractions, which contain various proteinases, to the mitochondrial fractions resulted in rapid degradation of the entire molecule of subunit c, whereas the degradation of subunit c was markedly delayed through the specific inhibition of TPP-I in lysosomal extracts by AAF-CMK. The stable subunit c in the mitochondrial-lysosomal fractions from cells of a patient with LINCL was degraded on incubation with purified TPP-I. The presence of TPP-I led to the sequential cleavage of tripeptides from the N-terminus of the peptide corresponding to the amino terminal sequence of subunit c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号