首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract High level expression of the functional β-carotene ketolase gene bkt from Haematococcus pluvialis occurred in Escherichia coli transformants producing β-carotene or zeaxanthin as a result of the presence of additional carotenoid genes from Erwinia uredovora . Requirement of molecular oxygen for the insertion of the keto group was demonstrated. The final product of this two-step ketolase reaction from β-carotene is canthaxanthin (4,4'-diketo-β-carotene) with the 4-monoketo derivative echinenone as an intermediate. A reaction sequence for the formation of astaxanthin from β-carotene was established based on kinetic data on astaxanthin formation in E. coli transformants carrying the hydroxylase gene crtZ from Erwinia along with bkt . We conclude that the carotenoids zeaxanthin and adonixanthin which accumulate in addition to astaxanthin in this transformant are products of side reactions rather than direct precursors of astaxanthin. The possible mechanisms for the formation of the keto derivatives are discussed.  相似文献   

2.
Rice ( Oryza sativa L.), the major food staple for more than two billion people, contains neither β-carotene (provitamin A) nor C40 carotenoid precursors thereof in its endosperm. To improve the nutritional value of rice, genetic engineering was chosen as a means to introduce the ability to make β-carotene into rice endosperm tissue. Investigation of the biochemical properties of immature rice endosperm using [14C]-labelled substrates revealed the presence of geranyl geranyl diphosphate, the C20 general isoprenoid precursor necessary for C40 carotenoid biosynthesis. Phytoene synthase, which condenses two molecules of geranyl geranyl diphosphate, is the first of four specific enzymes necessary for β-carotene biosynthesis in plants. Therefore, the Japonica rice model variety Taipei 309 was transformed by microprojectile bombardment with a cDNA coding for phytoene synthase from daffodil ( Narcissus pseudonarcissus ) under the control of either a constitutive or an endosperm-specific promoter. In transgenic rice plants, the daffodil enzyme is active, as measured by the in vivo accumulation of phytoene in rice endosperm. Thus, it is demonstrated for the first time that it is in principle possible to engineer a critical step in provitamin A biosynthesis in a non-photosynthetic, carotenoid-lacking plant tissue. These results have important implications for longterm prospects of overcoming worldwide vitamin A deficiency.  相似文献   

3.
SYNOPSIS.
The carotenoid compositions of 15 nitrosoguanidine-induced mutants of Crypthecodinium cohnii , a heterotrophic dinoflagellate, were determined by chromatographic and mass spectral analyses. Wild-type C. cohnii grown with irradiation of 250 W/cm2 visible light at 27 C synthesizes β-carotene (33%) and γ-carotene (67%) amounting to 0.083 mg/g dry wt. There are 4 types of carotenoid-deficient mutants: (I) albinos which synthesize no C40-carotonoids: (II) albinos blocked at the level of phytoene desaturation; (III) cream-colored cells which accumulate mainly §–carotene, with phytoene and/or β-zeacarotene also present; and (IV) light-orange strains which synthesize reduced amounts of β-carotene and γ-carotene.
Dark-grown wild-type cells produced 35% as much carotenoids as light-grown cells. Inhibition studies revealed that diphenylamine (3 γ) caused phytoene accumulation; nicotine at 0.9 mM blocked the final cyclization, to cause γ-carotene to accumulate in wild-type cells. Inhibition by adenine and guanine (1.5 mM) of carotenogenesis was demonstrated for the first time in any system. The effect of these purines was similar to that of diphenylamine addition: phytoene desaturation was largely inhibited.
The carotenogenic system in this dinoflagellate is similar to that of green algae and higher plants, and is under nuclear genetic control.  相似文献   

4.
Carotenoids play critical roles in both light harvesting and energy dissipation for the protection of photosynthetic structures. However, limited research is available on the impact of irradiance on the production of secondary plant compounds, such as carotenoid pigments. Kale ( Brassica oleracea L.) and spinach ( Spinacia oleracea L.) are two leafy vegetables high in lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different irradiance levels on tissue biomass, elemental nutrient concentrations, and lutein β-carotene and chlorophyll (chl) pigment accumulation in the leaves of kale and spinach. 'Winterbor' kale and 'Melody' spinach were grown in nutrient solution culture in growth chambers at average irradiance levels of 125, 200, 335, 460, and 620 μmol m−2 s−1. Highest tissue lutein β-carotene and chls occurred at 335 μmol m−2 s−1 for kale, and 200 μmol m−2 s−1 for spinach. The accumulations of lutein and β-carotene were significantly different among irradiance levels for kale, but were not significantly different for spinach. However, lutein and β-carotene accumulation was significant for spinach when computed on a dry mass basis. Identifying effects of irradiance on carotenoid accumulation in kale and spinach is important information for growers producing these crops for dry capsule supplements and fresh markets.  相似文献   

5.
Carotenoids are essential components of the photosynthetic apparatus involved in plant photoprotection. To investigate the protective role of zeaxanthin under high light and UV stress we have increased the capacity for its biosynthesis in tobacco plants (Nicotiana tabacum L. cv. Samsun) by transformation with a heterologous carotenoid gene encoding -carotene hydroxylase (crtZ) from Erwinia uredovora under constitutive promoter control. This enzyme is responsible for the conversion of -carotene into zeaxanthin. Although the total pigment content of the transgenics was similar to control plants, the transformants synthesized zeaxanthin more rapidly and in larger quantities than controls upon transfer to high-intensity white light. Low-light-adapted tobacco plants were shown to be susceptible to UV exposure and therefore chosen for comparative analysis of wild-type and transgenics. Overall effects of UV irradiation were studied by measuring bioproductivity and pigment content. The UV exposed transformed plants maintained a higher biomass and a greater amount of photosynthetic pigments than controls. For revelation of direct effects, photosynthesis, pigment composition and chlorophyll fluorescence were examined immediately after UV treatment. Low-light-adapted plants of the crtZ transgenics showed less reduction in photosynthetic oxygen evolution and had higher chlorophyll fluorescence levels in comparison to control plants. After 1 h of high-light pre-illumination and subsequent UV exposure a greater amount of xanthophyll cycle pigments was retained in the transformants. In addition, the transgenic plants suffered less lipid peroxidation than the wild-type after treatment with the singlet-oxygen generator rose bengal. Our results indicate that an enhancement of zeaxanthin formation in the presence of a functional xanthophyll cycle contributes to UV stress protection and prevention of UV damage.  相似文献   

6.
The microalga Dunaliella salina (Teo.) is well known as an accumulator of β-carotene (β,β-carotene) when subjected to growth-limiting conditions (e.g. exposure to high irradiances). In addition, the carotenoid α-carotene (β,ε-carotene) may also be synthesized and subsequently accumulated by this alga under specific growth conditions. The main factor in stimulating the synthesis of this carotene was determined to be exposure to lower than optimum temperatures for algal growth. A 7.5-fold increase in the levels of α-carotene was observed when the temperature was decreased from 34 to 17° C, whilst levels of β-carotene were unaltered. The accumulation of α-carotene was unaffected by irradiance, although its isomeric composition was greatly altered by light levels. The proportion of 9- cis α-carotene increased from 15% to 45% of total α-carotene when the irradiance was decreased from 260 to 50 μmol·m−2·s−1. Exposure to higher irradiances had little influence on the isomeric composition of this carotenoid. A reduction in growth temperature did not influence the isomeric composition of α-carotene. Nutrient status (nitrogen and phosphate) had no effect on either the content or isomeric composition of α-carotene accumulated by D. salina.  相似文献   

7.
Abscisic acid (ABA) is a sesquiterpene compound (C15) derived from C40 carotenoids. The immediate carotenoid precursors for ABA biosynthesis, 9- cis -violaxanthin and 9'- cis -neoxanthin, are produced from β -carotene by a series of hydroxylation, epoxidation, and isomerization reactions. Carotenoid hydroxylase deficient mutants contain severely reduced levels of violaxanthin and neoxanthin ( < 20% of wild type level) and provide a unique system to correlate carotenoid substrate availability and ABA production in photosynthetic tissues under non-stressed conditions. Quantitative measurements indicated that ABA levels in the carotenoid hydroxylase mutants are reduced nearly 50% compared to the wild type plants under non-stressed conditions. When drought-stressed, wild type plants showed up to a 17-fold increase in ABA levels, while ABA levels in the carotenoid hydroxylase mutants were only increased 6- to 7-fold (25% of wild type drought-stressed ABA levels). Expression of AtNCED3 ( Arabidopsis thaliana nine- cis -epoxycarotenoid dioxygenase 3, the rate-limiting activity for ABA biosynthesis) was induced in the carotenoid hydroxylase mutants, but to a lesser extent than the 40-fold increase in wild type plants. Therefore, the reduced ABA accumulation in response to drought-stress is at least partially due to the attenuated increase in AtNCED3 gene expression in the carotenoid hydroxylase mutants. The remaining violaxanthin and neoxanthin in the carotenoid hydroxylase mutants can not be converted into ABA, indicating that there is probably a separate pool of violaxanthin and neoxanthin that is not accessible to the cleavage enzymes, because it is sequestered in the light-harvesting complexes.  相似文献   

8.
9.
A carotenoid gene (crtR-B) from the green alga Haematococcus pluvialis, encoding β-carotene hydroxylase that was able to catalyze the conversion of β-carotene to zeaxanthin and canthaxanthin to astaxanthin, was cloned into Chlamydomonas reinhardtii chloroplast expression vector p64D to yield plasmid p64DcrtR-B. The vector p64DcrtR-B was transferred to the chloroplast genome of C. reinhardtii using micro-particle bombardment. PCR and Southern blot analyses indicated that crtR-B was integrated into the chloroplast genome of the transformants. RT-PCR assays showed that the H. pluvialis crt R-B gene was expressed in C. reinhardtii transformants. The transformants rapidly synthesized carotenoids in larger quantities than the wild-type upon being transferred from moderate to high-intensity white light. This research provides a foundation for further study to elucidate the possible mechanism of photo-protection by xanthophylls and other carotenoids in high light conditions or through exposure to UV radiation.  相似文献   

10.
Astaxanthin is a high-value ketocarotenoid rarely found in plants. It is derived from β-carotene by the 3-hydroxylation and 4-ketolation of both ionone end groups, in reactions catalyzed by β-carotene hydroxylase and β-carotene ketolase, respectively. We investigated the feasibility of introducing an extended carotenoid biosynthesis pathway into rice endosperm to achieve the production of astaxanthin. This allowed us to identify potential metabolic bottlenecks that have thus far prevented the accumulation of this valuable compound in storage tissues such as cereal grains. Rice endosperm does not usually accumulate carotenoids because phytoene synthase, the enzyme responsible for the first committed step in the pathway, is not present in this tissue. We therefore expressed maize phytoene synthase 1 (ZmPSY1), Pantoea ananatis phytoene desaturase (PaCRTI) and a synthetic Chlamydomonas reinhardtii β-carotene ketolase (sCrBKT) in transgenic rice plants under the control of endosperm-specific promoters. The resulting grains predominantly accumulated the diketocarotenoids canthaxanthin, adonirubin and astaxanthin as well as low levels of monoketocarotenoids. The predominance of canthaxanthin and adonirubin indicated the presence of a hydroxylation bottleneck in the ketocarotenoid pathway. This final rate-limiting step must therefore be overcome to maximize the accumulation of astaxanthin, the end product of the pathway.  相似文献   

11.
The plant hormone abscisic acid (ABA) participates in the control of several important physiological processes in plants such as stomata regulation, seed dormancy and stress tolerance. A new strategy was developed to study these phenomena by blocking abscisic acid with intracellularly expressed specific single-chain variable fragment (scFv) antibodies. Here evidence is presented that the expression of single-chain Fv antibodies against abscisic acid in the endoplasmic reticulum of transgenic tobacco cells leads to a wilty phenotype. Stomatal conductance is increased at high CO2 concentrations dependent on the level of antibody expression in leaves. Symptoms of abscisic acid deficiency were generated in the transformants although they have even higher levels of abscisic acid than wild-type plants.  相似文献   

12.
Mutagenic treatment with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) inPhaffia rhodozyma generated 15 mutants with a wide diversity of color variants ranging from white to dark red. Characterization of the mutants by absorption spectra, TLC and HPLC was performed. Two categories could be distinguished: astaxanthin hyperproducing and astaxanthin hypoproducing mutants. Hyperproducing mutants exhibited considerable increases in astaxanthin content whereas hypoproducing mutants showed higher β-carotene contents than the wild-type strain. The characterization of carotenoid mutants inP. rhodozyma could contribute to the knowledge of the biosynthetic pathway of astaxanthin production of this microorganism.  相似文献   

13.
Abstract The carotenoid composition of the astaxanthin-producing bacterium Agrobacterium aurantiacum was analysed under different culture conditions. Ten kinds of carotenoids, β-carotene, echinenone, β-cryptoxanthin, 3-hydroxyechinenone, canthaxanthin, 3'-hydroxyechinenone, zeaxanthin, adonirubin, adonixanthin and astaxanthin, were identified by HPLC and spectroscopical techniques. A. aurantiacum synthesized astaxanthin from β-carotene through two hydroxylation steps at C-3 and 3', and oxidation steps at C-4 and 4'. The order of these reactions appeared to be controlled by the culture conditions. A new pathway for astaxanthin formation, different from that of other astaxanthin-producing microorganisms, is proposed.  相似文献   

14.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   

15.
The carotenoid pigments of the hepatopancreas, ovaries and epidermis of Carcinus maenas were investigated. The following pigments were identified: β-carotene, δ-carotene, echinenone, isocryptoxanthin, canthaxanthin, lutein, zeaxanthin, flavoxanthin and astacene.
The relative abundance of these pigments in the three tissues and the presence of possible hydroxy and keto intermediates suggest the metabolism of astaxanthin from β-carotene. The metabolic pathway in Carcinus is discussed in relation to recent studies on other invertebrates.  相似文献   

16.
The carotenoid pigments of the hepatopancreas, ovaries and epidermis of Carcinus maenas were investigated. The following pigments were identified: β-carotene, δ-carotene, echinenone, isocryptoxanthin, canthaxanthin, lutein, zeaxanthin, flavoxanthin and astacene.
The relative abundance of these pigments in the three tissues and the presence of possible hydroxy and keto intermediates suggest the metabolism of astaxanthin from β-carotene. The metabolic pathway in Carcinus is discussed in relation to recent studies on other invertebrates.  相似文献   

17.
Glutathione peroxidase (GPX)-like proteins (GPX-1 and GPX-2) of Synechocystis PCC 6803 ( S. PCC 6803) reduce unsaturated fatty acid hydroperoxides using NADPH, but not reduced glutathione (GSH), as an electron donor. Here, we generated transgenic Arabidopsis plants overexpressing S. PCC 6803 GPX-2 in the cytosol (AcGPX2) or chloroplasts (ApGPX2). The activities toward α-linolenic acid hydroperoxide in ApGPX2 and AcGPX2 plants were 6.5–11.5 and 8.2–16.3 nmol min−1 mg protein−1, respectively, while no activity (<0.1 nmol min−1 mg protein−1) was detected in the wild-type plants. Both transgenic lines (AcGPX2 and ApGPX2) showed enhanced tolerance to oxidative damage caused by treatment with H2O2 (10 m M ), Fe ions (200 μ M ) or methylviologen (50 μ M ) and environmental stress conditions, such as chilling with high light intensity (4°C, 1000 μmol photons m−2 s−1), high salinity (100 m M NaCl) or drought. The degree of tolerance of the transgenic plants to all types of stress was correlated with the levels of lipid peroxide suppressed by the overexpression of S. PCC 6803 GPX-2. Under conditions of oxidative stress due to the H2O2 treatment, the NADPH/(NADP++ NADPH) ratio in the transgenic plants was lower than that in the wild-type plants. The data reported here indicate that the expression of S. PCC 6803 GPX-2 contributes to the reduction in unsaturated fatty acid hydroperoxides using NADPH in situ under stress conditions in the transgenic plants.  相似文献   

18.
Abstract: Transgenic Caenorhabditis elegans animals have been engineered to express wild-type and single-amino acid variants of a long form of human β-amyloid peptide (Aβ 1–42). These animals express high levels (∼300 ng of Aβ/mg of total protein) of apparently full-length peptide, as determined by quantitative immunoblot. Expression of wild-type Aβ in these animals leads to rapid production of amyloid deposits reactive with Congo red and thioflavin S. This model system has been used to examine the effect of Leu17Pro, Leu17Val, Ala30-Pro, Met35Cys, and Met35Leu substitutions on the in vivo production of amyloid deposits. We find that the Leu17Pro and Met35Cys substitutions completely block the formation of thioflavin S-reactive deposits, implicating these as key residues for in vivo amyloid formation. We have also constructed transgenic strains expressing a novel Aβ variant, the single-chain dimer. Animals expressing high levels of this variant also fail to produce thioflavin S-reactive deposits.  相似文献   

19.
Metabolic engineering of astaxanthin production in tobacco flowers   总被引:28,自引:0,他引:28  
Using metabolic engineering, we have modified the carotenoid biosynthesis pathway in tobacco (Nicotiana tabacum) to produce astaxanthin, a red pigment of considerable economic value. To alter the carotenoid pathway in chromoplasts of higher plants, the cDNA of the gene CrtO from the alga Haematococcus pluvialis, encoding beta-carotene ketolase, was transferred to tobacco under the regulation of the tomato Pds (phytoene desaturase) promoter. The transit peptide of PDS from tomato was used to target the CRTO polypeptide to the plastids. Chromoplasts in the nectary tissue of transgenic plants accumulated (3S,3'S) astaxanthin and other ketocarotenoids, changing the color of the nectary from yellow to red. This accomplishment demonstrates that plants can be used as a source of novel carotenoid pigments such as astaxanthin. The procedures described in this work can serve as a platform technology for future genetic manipulations of pigmentation of fruits and flowers of horticultural and floricultural importance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号