首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transducers are transmembrane proteins that are central to the chemotactic system of Escherichia coli. The proteins transduce ligand recognition into an excitatory signal and function in adaptation as methyl-accepting proteins. The transducer genes tsr, tar, and tap have extensive homology with each other. However, previous studies revealed little indication of homology between those three transducer genes and a fourth gene, trg. We investigated the relationship between trg and the other genes by blot-hybridization experiments and the relationship between Trg and the other transducer proteins by immune precipitation and experiments with an antiserum raised to purified Trg protein. In experiments in which 35% mismatch would be tolerated, weak hybridization of trg was detected to a DNA fragment containing tar and tap but not to a fragment containing tsr. In experiments in which only 30% mismatch would be tolerated, no trg hybridization was apparent either to total chromosomal DNA or to DNA from hybrid plasmids carrying the other transducer genes. An anti-Trg serum formed immune precipitates with the Tsr and Tar proteins as well as with the Trg protein to which it was raised. We conclude that there is homology between Trg and the other transducer, but the homology is more limited than that shared among the other transducers. Furthermore, we found no indication of additional transducer genes closely related to trg. Thus, the trg gene is a somewhat distant cousin within a single transducer gene family of E. coli.  相似文献   

2.
In Escherichia coli, the periplasmic maltose-binding protein (MBP), the product of the malE gene, is the primary recognition component of the transport system for maltose and maltodextrins. It is also the maltose chemoreceptor, in which capacity it interacts with the signal transducer Tar (taxis to aspartate and some repellents). In studies of the maltose system in other members of the family Enterobacteriaceae, we found that MBP is produced by Salmonella typhimurium, Klebsiella pneumoniae, Enterobacter aerogenes, and Serratia marcescens. MBP from all of these species cross-reacted with antibody against the E. coli protein and had a similar molecular weight (about 40,000). The Shigella flexneri and Proteus mirabilis strains we examined did not synthesize MBP. The isoelectric points of MBP from different species varied from the acid extreme of E. coli (4.8) to the basic extreme of E. aerogenes (8.9). All species with MBP transported maltose with high affinity, although the Vmax for K. pneumoniae was severalfold lower than that for the other species. Maltose chemotaxis was observed only in E. coli and E. aerogenes. In S. typhimurium LT2, Tar was completely inactive in maltose taxis, although it signaled normally in response to aspartate. MBP isolated from all five species could be used to reconstitute maltose transport and taxis in a delta malE strain of E. coli after permeabilization of the outer membrane with calcium.  相似文献   

3.
A Krikos  N Mutoh  A Boyd  M I Simon 《Cell》1983,33(2):615-622
The tar and tsr genes of E. coli encode functionally analogous transducer proteins that mediate two distinct classes of chemotactic response. The tap gene lies adjacent to tar, and is thought to encode another transducer protein. We present here the complete nucleotide sequence of the tar-tap region of the E. coli genome, together with a comparative analysis of the sequences of the Tar, Tap, and Tsr proteins. The proteins appear to have a simple transmembrane structure consisting of an extracytoplasmic amino-terminal domain, a membrane-spanning domain, and an intracellular carboxy-terminal domain. The carboxy-terminal domains of three proteins possess highly homologous sequences and contain sites of methylation involved in sensory adaptation, while the amino-terminal sequences are only distantly related to one another, consistent with their serving as chemoreceptor domains that have diverged functionally.  相似文献   

4.
The sensory transducers of Escherichia coli are integral membrane proteins that mediate the tactic response of cells to chemical stimuli. Adaptation to environmental stimuli is correlated with methylation of the transducer proteins. Two transducer genes, tsr and tar, exhibit extensive homologies while no homology has been detected between a third transducer, trg, and those genes. The Tsr and Tar proteins have been shown to contain multiple sites for methylation as well as two sites for another modification that requires an active cheB gene product and is designated the CheB-dependent modification. In this study, covalent modifications of the Trg protein were characterized by analysis of tryptic peptides. We found that methylation occurred at several sites on the Trg protein and that the protein contained at least three sites for CheB-dependent modification, two of which were located on a tryptic peptide that contains both methionine and lysine. This tryptic peptide is analogous to the methionine- and lysine-containing methyl-accepting peptides isolated from the Tsr and Tar proteins and like those peptides may contain several methyl-accepting sites. We estimated the pKa of the group created by the CheB-dependent modification on the methionine- and lysine-containing peptide of Trg to be between pH 2.2 and 5.8. This result supports the idea that the CheB-dependent modification is an enzymatic deamidation of glutamine to glutamic acid.  相似文献   

5.
The Tsr protein of Escherichia coli is a chemosensory transducer that mediates taxis toward serine and away from certain repellents. Like other bacterial transducers, Tsr spans the cytoplasmic membrane twice, forming a periplasmic domain of about 150 amino acids and a cytoplasmic domain of about 300 amino acids. The 32 N-terminal amino acids of Tsr resemble the consensus signal sequence of secreted proteins, but they are not removed from the mature protein. To investigate the function of this N-terminal sequence in the assembly process, we isolated translational fusions between tsr and the phoA and lacZ genes, which code for the periplasmic enzyme alkaline phosphatase and the cytoplasmic enzyme beta-galactosidase, respectively. All tsr-phoA fusions isolated code for proteins whose fusion joints are within the periplasmic loop of Tsr, and all of these hybrid proteins have high alkaline phosphatase activity. The most N-terminal fusion joint is at amino acid 19 of Tsr. Tsr-lacZ fusions were found throughout the tsr gene. The beta-galactosidase activity of the LacZ-fusion proteins varies greatly, depending on the location of the fusion joint. Fusions with low activity have fusion joints within the periplasmic loop of Tsr. The expression of these fusions is most likely reduced at the level of translation. In addition, one of these fusions markedly reduces the export and processing of the periplasmic maltose-binding protein and the outer membrane protein OmpA, but not of intact PhoA or of the outer membrane protein LamB. A temperature-sensitive secA mutation, causing defective protein secretion, stops expression of new alkaline phosphatase activity coded by a tsr-phoA fusion upon shifting to the nonpermissive temperature. The same secA mutation, even at the permissive temperature, increases the activity and the level of expression of LacZ fused to the periplasmic loop of Tsr relative to a secA+ strain. We conclude that the assembly of Tsr into the cytoplasmic membrane is mediated by the machinery responsible for the secretion of a subset of periplasmic and outer membrane proteins. Moreover, assembly of the Tsr protein seems to be closely coupled to its synthesis.  相似文献   

6.
The tsr and tar genetic loci of Escherichia coli determine the presence in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of methyl-accepting chemotaxis proteins (MCPs) I and II, respectively, each of which consists of a distinct group of multiple bands. Synthesis of the tsr and tar products was directed in ultraviolet-irradiated bacteria by lambda transducing phages. The addition of appropriate chemotactic stimuli to these cells resulted in the appearance of additional, faster migrating electrophoretic forms of the Tsr and Tar polypeptides which disappeared upon removal of the stimulus. The stimulus-elicited forms comigrated with component bands of the corresponding MCPs. These results indicate that methylation itself caused shifts in electrophoretic mobility and hence led to the observed MCP band patterns. The number of Tsr species suggested that there were at least three methylated sites on the Tsr polypeptide. The conclusion that methylation generates multiplicity was supported by the results of experiments in which the tsr product was synthesized in mutant bacteria defective in specific chemotaxis functions concerned with methylation or demethylation of MCPs. Thus, the presence of a cheX defect blocked the stimulus-elicited appearance of faster migrating forms of the tsr product; conversely, the presence of a cheB defect resulted in a pronounced shift toward these forms in the absence of a chemotactic stimulus.  相似文献   

7.
The adaptation process in several cheD chemotaxis mutants, which carry defects in tsr, the serine transducer gene, was examined. cheD mutants are smooth swimming and generally nonchemotactic; the defect is dominant to the wild-type tsr gene (J. S. Parkinson, J. Bacteriol. 142:953-961, 1980). All classes of methyl-accepting chemotaxis proteins synthesized in unstimulated cheD strains are overmethylated relative to the wild type. We found that the steady-state rate of demethylation in cheD mutants was low; this may explain their overmethylated phenotype. In addition, all cheD mutants showed diminished responsiveness of methylesterase activity to attractant and repellent stimuli transduced by either the Tsr or Tar protein, and they did not adapt. These results suggest that the dominant nature of the cheD mutations is manifested as a general defect in the regulation of demethylation. Some of these altered properties of methylesterase activity in cheD mutants were exhibited in wild-type cells that were treated with saturating concentrations of serine. The mutant Tsr protein thus seems to be locked into a signaling mode that suppresses tumbling and inhibits methylesterase activity in a global fashion. We found that the Tar and mutant Tsr proteins synthesized in cheD strains were methylated and deamidated at the correct sites and that the mutations were not located in the methylated peptides. Thus, the signaling properties of the transducers may be controlled at sites distinct from the methyl-accepting sites.  相似文献   

8.
The tsr gene specifies a methyl-accepting membrane protein involved in chemotaxis to serine and several repellent compounds. We have characterized a special class of tsr mutations designated cheD which alter the signaling properties of the Tsr transducer. Unlike tsr null mutants, cheD strains are generally nonchemotactic, dominant in complementation tests, and exhibit a pronounced counterclockwise bias in flagellar rotation. Several lines of evidence showed that cheD mutations were alleles of the tsr gene. First, cheD mutations were mapped into the same deletion segments as conventional tsr mutations. Second, restriction site analysis of the transducing phage deletions used to construct the genetic map demonstrated that the endpoints of the deletion segments fell within the tsr coding sequence. Third, a number of the cheD mutants synthesized Tsr proteins with slight changes in electrophoretic mobility, consistent with alterations in Tsr primary structure. These mutant proteins were able to undergo posttranslational deamidation and methylation reactions in the same manner as wild-type Tsr protein; however, the steady-state level of Tsr methylation in cheD strains was very high. The methylation state of the Tar protein, another species of methyl-accepting protein in Escherichia coli, was also higher than normal in cheD strains, suggesting that the aberrant Tsr transducer in cheD mutants has a generalized effect on the sensory adaptation system of the cell. These properties are consistent with the notion that the Tsr protein of cheD mutants is locked in an excitatory signaling mode that both activates the sensory adaptation system and drowns out chemotactic signals generated by other transducer species. Further study of cheD mutations thus promises to reveal valuable information about the functional architecture of the Tsr protein and how this transducer controls flagellar behavior.  相似文献   

9.
When Salmonella typhimurium cells were allowed to swarm on either a minimal or complex semisolid medium, patterns of cell aggregates were formed (depending on the thickness of the medium). No patterns were observed with nonchemotactic mutants. The patterns in a minimal medium were not formed by a mutant in the aspartate receptor for chemotaxis (Tar) or by wild-type cells in the presence of alpha-methyl-D,L-aspartate (an aspartate analog), thus resembling the patterns observed earlier in Escherichia coli (E. O. Budrene and H. C. Berg, Nature [London] 349:630-633, 1991) and S. typhimurium (E. O. Budrene and H. C. Berg, Abstracts of Conference II on Bacterial Locomotion and Signal Transduction, 1993). Distinctively, the patterns in a complex medium had a different morphology and, more importantly, were Tar independent. Furthermore, mutations in any one of the genes encoding the methyl-accepting chemotaxis receptors (tsr, tar, trg, or tcp) did not prevent the pattern formation. Addition of saturating concentrations of the ligands of these receptors to wild-type cells did not prevent the pattern formation as well. A tar tsr tcp triple mutant also formed the patterns. Similar results (no negative effect on pattern formation) were obtained with a ptsI mutant (defective in chemotaxis mediated by the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system [PTS]) and with addition of mannitol (a PTS ligand) to wild-type cells. It therefore appears that at least two different pathways are involved in the patterns formed by S. typhimurium: Tar dependent and Tar independent. Like the Tar-dependent patterns observed by Budrene and Berg, the Tar-independent patterns could be triggered by H(2)O(2), suggesting that both pathways of pattern formation may be triggered by oxidative stress.  相似文献   

10.
The Tar protein of Escherichia coli is a chemotactic signal transducer that spans the cytoplasmic membrane and mediates responses to the attractants aspartate and maltose. Aspartate binds directly to Tar, whereas maltose binds to the periplasmic maltose-binding protein, which then interacts with Tar. The Arg-64, Arg-69, and Arg-73 residues of Tar have previously been shown to be involved in aspartate sensing. When lysine residues are introduced at these positions by site-directed mutagenesis, aspartate taxis is disrupted most by substitution at position 64, and maltose taxis is disrupted most by substitution at position 73. To explore the spatial distribution of ligand recognition sites on Tar further, we performed doped-primer mutagenesis in selected regions of the tar gene. A number of mutations that interfere specifically with aspartate taxis (Asp-), maltose taxis (Mal-), or both were identified. Mutations affecting residues 64 to 73 or 149 to 154 in the periplasmic domain of Tar are associated with an Asp- phenotype, whereas mutations affecting residues 73 to 83 or 141 to 150 are associated with a Mal- phenotype. We conclude that aspartate and maltose-binding protein interact with adjacent and partially overlapping regions in the periplasmic domain of Tar to initiate attractant signalling.  相似文献   

11.
The tsr gene of Escherichia coli, located at approximately 99 min on the chromosomal map, encodes a methyl-accepting protein that serves as the chemoreceptor and signal transducer for chemotactic responses to serine and several repellents. To determine whether any other chemotaxis or motility genes were located in the tsr region, we constructed and characterized two lambda tsr transducing phages that each contain about 12 kilobases of chromosomal material adjacent to tsr. lambda tsr70 carries sequences from the promoter-proximal side of tsr; lambda tsr72 carries sequences from the promoter-distal side of tsr. Restriction maps of the bacterial inserts in these phages and Southern hybridization analyses of the bacterial chromosome indicated that the tsr gene is transcribed in the counterclockwise direction on the genetic map. Insert deletions were isolated in lambda tsr70 and transferred into the host chromosome to examine the null phenotype of tsr. All such strains exhibited wild-type swimming patterns and chemotactic responses to a variety of stimuli, but were specifically defective in serine taxis and other Tsr-mediated responses. In addition, UV programming experiments demonstrated that Tsr and several of its presumptive degradation products were the only bacterial proteins encoded by lambda tsr70 and lambda tsr72 that required host FlbB/FlaI function for expression. These findings indicate that there are probably no other chemotaxis-related genes in the tsr region. A series of tsr point mutations were isolated by propagating lambda tsr70 on a mutD host and used to construct a fine-structure map of the tsr locus. These mutations should prove valuable in exploring structure-function relationships in the Tsr transducer.  相似文献   

12.
The prevalence and function of four chemoreceptors, Tsr, Tar, Trg, and Tap, were determined for a collection of uropathogenic, fecal-commensal, and diarrheagenic Escherichia coli strains. tar and tsr were present or functional in nearly all isolates. However, trg and tap were significantly less prevalent or functional among the uropathogenic E. coli strains (both in 6% of strains) than among fecal-commensal strains (both in > or =50% of strains) or diarrheal strains (both in > or =75% of strains) (P < 0.02).  相似文献   

13.
Aspartate taxis mutants of the Escherichia coli tar chemoreceptor.   总被引:13,自引:8,他引:5       下载免费PDF全文
The Tar protein of Escherichia coli belongs to a family of methyl-accepting inner membrane proteins that mediate chemotactic responses to a variety of compounds. These transmembrane signalers monitor the chemical environment by means of specific ligand-binding sites arrayed on the periplasmic side of the membrane, and in turn control cytoplasmic signals that modulate the flagellar rotational machinery. The periplasmic receptor domain of Tar senses two quite different chemoeffectors, aspartate and maltose. Aspartate is detected through direct binding to Tar molecules, whereas maltose is detected indirectly when complexed with the periplasmic maltose-binding protein. Saturating levels of either aspartate or maltose do not block behavioral responses to the other compound, indicating that the detection sites for these two attractants are not identical. We initiated structure-function studies of these chemoreceptor sites by isolating tar mutants which eliminate aspartate or maltose taxis, while retaining the ability to respond to the other chemoeffector. Mutants with greatly reduced aspartate taxis are described and characterized in this report. When present in single copy in the chromosome, these tar mutations generally eliminated chemotactic responses to aspartate and structurally related compounds, such as glutamate and methionine. Residual responses to these compounds were shifted to higher concentrations, indicating a reduced affinity of the aspartate-binding site in the mutant receptors. Maltose responses in the mutants ranged from 10 to 80% of normal, but had no detectable threshold shifts, indicating that these receptor alterations may have little effect on maltose detection sensitivity. The mutational changes in 17 mutants were determined by DNA sequence analysis. Each mutant exhibited a single amino acid replacement at residue 64, 69, or 73 in the Tar molecule. The wild-type Tar transducer contains arginines at all three of these positions, implying that electrostatic forces may play an important role in aspartate detection.  相似文献   

14.
Mutants of Escherichia coli and Salmonella typhimurium that were deficient in protein methylesterase activity encoded by cheB had an inverted response to oxygen; they were repelled by concentrations of oxygen that attract wild-type bacteria. Normal responses to oxygen and phosphotransferase substrates were observed in mutants that were deficient in protein methyltransferase (CheR) and the methyl-accepting transducing proteins (Tsr, Tar, Trg). However, the methylation-independent response to oxygen was modified by the loss of esterase activity. The inversion was apparently effected by the amidated Tsr protein present in cheB tsr+ mutants because aerotaxis was normal in cheB tsr strains. Chemotaxis to phosphotransferase sugars was normal in cheB mutants provided the extreme clockwise bias of the flagellar motors was modified to increase the probability of counterclockwise rotation.  相似文献   

15.
The maltose chemoreceptor in Escherichia coli consists of the periplasmic maltose-binding protein (MBP) and the Tar signal transducer, which is localized in the cytoplasmic membrane. We previously isolated strains containing malE mutations that cause specific defects in the chemotactic function of MBP. Four of these mutations have now been characterized by DNA sequence analysis. Two of them replace threonine at residue 53 of MBP with isoleucine (MBP-TI53), one replaces an aspartate at residue 55 with asparagine (MBP-DN55), and the fourth replaces threonine at residue 345 with isoleucine (MBP-TI345). The chemotactic defects of MBP-TI53 and MBP-DN55, but not of MBP-TI345, are suppressed by mutations in the tar gene. Of the tar mutations, the most effective suppressor (isolated independently three times) replaces Arg-73 of Tar with tryptophan. Two other tar mutations that disrupt the aspartate chemoreceptor function of Tar also suppress the maltose taxis defects associated with MBP-TI53 and MBP-DN55. One of these mutations introduces glutamine at residue 73 of Tar, the other replaces arginine at residue 69 of Tar with cysteine. These results suggest that regions of MBP that include residues 53 to 55 and residue 345 are important for the interaction with Tar. In turn, arginines at residues 69 and 73 of Tar must be involved in the recognition of maltose-bound MBP and/or in the production of the attractant signal generated by Tar in response to maltose-bound MBP.  相似文献   

16.
The tar and tap loci of Escherichia coli encode methyl-accepting inner membrane proteins that mediate chemotactic responses to aspartate and maltose or to dipeptides. These genes lie adjacent to each other in the same orientation on the chromosome and have extensive sequence homology throughout the C-terminal portions of their coding regions. Many spontaneous deletions in the tar-tap region appear to be generated by recombination between these regions of homology, leading to gene fusions that produce hybrid transducer molecules in which the N terminus of Tar is joined to the C terminus of Tap. The properties of two such hybrids are described in this report. Although Tar and Tap molecules have homologous domain structures, these Tar-Tap hybrids exhibited defects in stimulus detection and flagellar signaling. Both hybrid transducers retained Tar receptor specificity, but had reduced detection sensitivity. This defect was correlated with the presence of the C-terminal methyl-accepting segment of Tap, which may have more methylation sites than its Tar counterpart, leading to elevated steady-state methylation levels in the hybrid molecules. One of the hybrids, which carried a more extensive segment from Tap, appeared to generate constitutive signals that locked the flagellar motors in a counterclockwise rotational mode. Changes in the methylation state of this transducer were ineffective in cancelling this aberrant signal. These findings implicate the conserved C-terminal domain of bacterial transducers in the generation or regulation of flagellar signals.  相似文献   

17.
L Lee  T Mizuno    Y Imae 《Journal of bacteriology》1988,170(10):4769-4774
Tsr, a chemoreceptor for serine and repellents in Escherichia coli, also functions as a thermoreceptor. The relationship between the chemoreceptor and thermoreceptor functions of Tsr was examined in five tsr mutants with altered serine detection thresholds. The thermosensing abilities of the mutant Tsr proteins were not affected by the alterations in their affinities to serine. In contrast, the ability of serine to inactivate thermoreceptor function was altered in these mutants. The minimal serine concentration required for thermoreceptor inactivation was directly related to the decreased affinity of the mutant Tsr for serine. The amino acid replacements in the mutant receptors were deduced from DNA sequence analyses and occurred at two different locations in the presumed periplasmic domain of Tsr. Two mutations caused histidine or cysteine replacements at arginine 64, whereas three others caused isoleucine or proline replacements at threonine 156.  相似文献   

18.
The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, with a foreign periplasmic domain (from Tsr or from several Pseudomonas chemoreceptors), or lacking nearly the entire periplasmic domain still mediated attractant responses to phenol. Similarly, Tar molecules with the cytoplasmic methylation and kinase control domains of Tsr still sensed phenol as an attractant. Additional hybrid receptors with signaling elements from both Tar and Tsr indicated that the transmembrane (TM) helices and HAMP domain determined the sign of the phenol-sensing response. Several amino acid replacements in the HAMP domain of Tsr, particularly attractant-mimic signaling lesions at residue E248, converted Tsr to an attractant sensor of phenol. These findings suggest that phenol may elicit chemotactic responses by diffusing into the cytoplasmic membrane and perturbing the structural stability or position of the TM bundle helices, in conjunction with structural input from the HAMP domain. We conclude that behavioral responses to phenol, and perhaps to temperature, cytoplasmic pH, and glycerol, as well, occur through a general sensing mechanism in chemoreceptors that detects changes in the structural stability or dynamic behavior of a receptor signaling element. The structurally sensitive target for phenol is probably the TM bundle, but other behaviors could target other receptor elements.  相似文献   

19.
In Escherichia coli, taxis to certain chemoeffectors is mediated through an intrinsic membrane protein called methyl-accepting chemotaxis protein I (MCP I), which is the product of the tsr gene. Mutants were selected that are defective in taxis toward all MCP I-mediated attractants (alpha-aminoisobutyrate, L-alanine, glycine, and L-serine) but are normal to MCP I-mediated repellents and to chemoeffectors mediated by other MCPs. The mutants could be divided into two classes based on their ability to respond to various concentrations of L-serine. Two MCP I-mediated L-serine systems appear to function in the wild type: one of high and one of lower affinity. The mutations responsible for the serine taxis defects map at about 99 min on the E. coli chromosome and are not complemented by episomes carrying mutations in the tsr gene; this suggests that they are defective in tsr function. Low concentrations of L-[14C]serine specifically bound to wild-type membranes with a Km of 5 microM; in contrast, there was greatly decreased binding to vesicles prepared from the new mutants or from the tsr mutant AW518. Binding of labeled serine to wild-type vesicles was inhibited by MCP I-mediated attractants, but not by MCP II-mediated attractants. The data suggest that MCP I may function as the L-serine chemoreceptor in E. coli.  相似文献   

20.
Cloning of trg, a gene for a sensory transducer in Escherichia coli.   总被引:22,自引:15,他引:7       下载免费PDF全文
Clones of trg, a gene which codes for a chemotactic transducer, were isolated linked to ColE1 and pBR322 vectors. Studies with the hybrid plasmids demonstrated unequivocally that trg is the structural gene for methyl-accepting chemotaxis protein III. The Trg protein was found to be structurally complex, electrophoresing as a series of seven bands on high-resolution sodium dodecyl sulfate-polyacrylamide gels. The multiplicity of bands is a function of the activity of cheR, which codes for a methyltransferase, and of cheB, which codes for a demethylase. It appears that Trg, a quantitatively minor transducer, resembles the two major transducer proteins, Tsr and Tar, in that all three are multiply methylated and also multiply modified in a second way which requires an active cheB gene. However, preliminary analysis of the Trg protein indicated that it is significantly less related structurally to the Tsr or Tar protein than those two transducers are to each other. This implies that the features of multiple methylation and cheB-dependent modification are likely to be critical for the common physiological functions in chemotactic excitation and adaptation performed by all three transducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号