首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxoplasma gondii is an important zoonotic parasite with a worldwide distribution. It infects about one-third of the world's population, causing serious illness in immunosuppressed individuals, fetuses, and infants. Toxoplasma gondii biology within the host cell includes several important phases: (1) active invasion and establishment of a nonfusogenic parasitophorous vacuole in the host cell, (2) extensive modification of the parasitophorous vacuolar membrane for nutrient acquisition, (3) intracellular proliferation by endodyogeny, (4) egress and invasion of new host cells, and (5) stage conversion from tachyzoite to bradyzoite and establishment of chronic infection. During these processes, T. gondii regulates the host cell by modulating morphological, physiological, immunological, genetic, and cellular biological aspects of the host cell. Overall, the infection/development predispositions of T. gondii -host cell interactions overtakes the infection resistance aspects. Upon invasion and development, host cells are modulated to keep a delicate balance between facilitating and eliminating the infection.  相似文献   

2.
Toxoplasma gondii is an obligate intracellular parasite that causes severe disease in humans. It is able to infect all nucleated mammalian cells leading to lifelong persistence of the parasite in the host. Here, we studied the effect of T. gondii infection on host cell proliferation and explored the molecular mechanisms involved in host cell cycle progression. We found that T. gondii induced G1/S transition in host cells in the presence of UHRF1, followed by G2 arrest after cyclin B1 downregulation which is probably the major cause of the arrest. Other molecules at the G2/M checkpoint including p53, p21 and Cdk1 were normally regulated. Interestingly, while parasite proliferation was normal in cells that were in the G2 phase, it was suppressed in G1-arrested cells induced by UHRF1-siRNA, indicating the importance of the G2 phase via UHRF1-induced G1/S transition for T. gondii growth.  相似文献   

3.
刚地弓形虫(Toxoplasma gondii)在细胞内严格寄生,因此它能引起哺乳类宿主(包括人类)细胞的感染。凋亡在宿主细胞与弓形虫的相互作用中发挥着重要的作用。在未受感染的宿主细胞中,凋亡被间接机制所限制,因而宿主细胞能够对弓形虫发生炎症反应。与之相反,在被感染的宿主细胞中,由于凋亡信号级联反应直接受到了干扰,从而抑制了宿主细胞凋亡,这就有利于弓形虫在宿主细胞内的生存和发育。值得注意的是,弓形虫调节和抑制凋亡的两种能力,需要一个精密的调节系统来调控弓形虫和宿主细胞的相互作用,以维持弓形虫稳定的持续感染。重点从弓形虫有关的宿主细胞的凋亡方面进行了介绍。  相似文献   

4.
Intracellular replication of Toxoplasma gondii requires cholesterol uptake by host cell low-density lipoprotein receptor (LDLr), a critical element in atherosclerosis. We evaluated host parasitism, inflammatory responses and development of atherosclerosis in LDLr knockout (LDLr(-/-)) and their controls C57BL/6 mice infected with T. gondii. Our results show that T. gondii cysts were reduced in LDLr(-/-) mice when compared to C57BL/6 mice. However, in presence of hypercholesterolemic diet, parasite growth in LDLr(-/-) mice was similar to that seen in infected C57BL/6 mice. In presence of a hypercholesterolemic diet, T. gondii infection leads to a 60% reduction of serum triacylglycerol, total and atherogenic lipoprotein cholesterol. When aortic valve lesion was analyzed, infected mice showed a reduction of atherosclerotic lesion area as well as CD36 expression. MCP-1, SRA-I, SRA-II, ICAM-1 and VCAM-1 mRNA expression was kept similar between infected and control groups. Thus, despite the intense inflammatory process, the drastic reduction in serum lipids seems to limit the development of atherosclerosis in LDLr(-/-) mice infected with T. gondii. In conclusion, our results indicate that T. gondii employs host LDLr to acquire cholesterol and favor its growth. However, in the presence of hypercholesterolemia, T. gondii parasites are able to acquire cholesterol-rich lipoproteins through an alternative host receptor, and overcome LDLr deficiency, favoring host parasitism and impairing lipid loading of foam cells.  相似文献   

5.
Toxoplasma gondii penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with T. gondii through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of T. gondii-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with T. gondii disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that T. gondii induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.  相似文献   

6.
Functional and quantitative analysis of splenic T cell immune responses following oral Toxoplasma gondii infection in mice. Experimental Parasitology 91, 212-221. Immunity to Toxoplasma gondii is mediated primarily by the host T cell response. Although there is considerable information regarding host immunity following intraperitoneal infection with tachyzoites, little information is available regarding naturally acquired infection following peroral infection with bradyzoites. In this study, a sequential quantitative analysis of the cell-mediated immune response was performed at the single cell level. To assess the kinetics of this response and parasitic loads, inbred mice were orally infected with the 76K strain bradyzoites of T. gondii. Within 24 h of infection, follicular hyperplasia followed by infiltration with histiocytes, macrophages, and apoptotic bodies was observed in the spleens of infected mice. T. gondii were detected from day 1, and counts increased gradually during the experimental period. Splenocyte DNA synthesis to antigen and mitogen was severely suppressed at days 7 and 10. The percentages of NK1.1(+) or delta gamma T cells were increased from day 1, whereas CD4(+) and CD8alpha+ T cells were signficantly increased after day 7 postinfection. CD25 expression and intracellular IFN-gamma production increased in NK1.1(+) cells on day 1 and by all other T cell subsets after day 4. Intracellular IL-4 did not increase until day 7, and IL-10 production was increased in all T cell subsets after day 4. Together, these findings indicate that oral infection with T. gondii stimulates a strong cellular immune response that appears to polarize toward an early Th1 response. However, within 7 days, a strong immune Th2 regulatory response as well as high parasitic loads can be observed, with a reduction in lymphoproliferation to mitogen stimulation, increased production of IL-4 and IL-10, and evidence of T cell apoptosis in the splenic immune compartment.  相似文献   

7.
Toxoplasma gondii is a protozoan parasite that infects a wide variety of warm-blooded animals and humans, in which it causes opportunistic disease. As an obligate intracellular parasite, T. gondii must invade a host cell to survive and replicate during infection. Recent studies suggest that T. gondii secretes a variety of proteins that appear to function during invasion or intracellular replication. These proteins originate from three distinct regulated secretory organelles called micronemes, rhoptries and dense granules. By discharging the contents of its secretory organelles at precise steps in invasion, T. gondii appears to timely deploy secretory proteins to their correct target destinations. Based on the timing of secretion and the characteristics of secretory proteins, an emerging theme is that T. gondii compartmentalizes its secretory proteins according to general function. Thus, it appears that micronemal proteins may function during parasite attachment to host cells, rhoptry proteins may facilitate parasite vacuole formation and host organellar association, and dense granule proteins likely promote intracellular replication, possibly by transporting and processing nutrients from the host cell. However, as more T. gondii secretory proteins are identified and characterized, it is likely that additional functions will be ascribed to each class of proteins secreted- by this fascinating invasive parasite.  相似文献   

8.
Tachyzoites of Toxoplasma gondii multiply within the parasitophorous vacuole (PV) until the lysis of the host cell. This study was undertaken to evaluate the effect of hydroxyurea (a specific drug that arrests cell division at G1/S phase) on the multiplication of T. gondii tachyzoites in infected Vero cells. Infected host cells were treated with hydroxyurea for periods varying from 5 to 48 h, and the survival and morphology of the parasite were determined. Hydroxyurea arrested intracellular T. gondii multiplication in all periods tested. After 48 h of incubation with hydroxyurea, intracellular parasites were not easily observed in Vero cells. Ultrastructural observations showed that infected host cells treated with hydroxyurea for 24 h or more presented disrupted intracellular parasites within the PV. However, the host cells exhibited a normal morphology. Our observations suggest that hydroxyurea was able to interfere with the cycle of the intracellular parasite, leading to the complete destruction of the T. gondii without affecting the host cells.  相似文献   

9.
Toxoplasma gondii modifies its host cell to suppress its ability to become activated in response to IFN-γ and TNF-α and to develop intracellular antimicrobial effectors, including NO. Mechanisms used by T. gondii to modulate activation of its infected host cell likely underlie its ability to hijack monocytes and dendritic cells during infection to disseminate to the brain and CNS where it converts to bradyzoites contained in tissue cysts to establish persistent infection. To identify T. gondii genes important for resistance to the effects of host cell activation, we developed an in vitro murine macrophage infection and activation model to identify parasite insertional mutants that have a fitness defect in infected macrophages following activation but normal invasion and replication in naive macrophages. We identified 14 independent T. gondii insertional mutants out of >8000 screened that share a defect in their ability to survive macrophage activation due to macrophage production of reactive nitrogen intermediates (RNIs). These mutants have been designated counter-immune mutants. We successfully used one of these mutants to identify a T. gondii cytoplasmic and conoid-associated protein important for parasite resistance to macrophage RNIs. Deletion of the entire gene or just the region encoding the protein in wild-type parasites recapitulated the RNI-resistance defect in the counter-immune mutant, confirming the role of the protein in resistance to macrophage RNIs.  相似文献   

10.
The central nervous system (CNS) of the intermediate host plays a central role in the lifelong persistence of Toxoplasma gondii as well as in the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised patients. In order to analyze the parasite-host interaction within the CNS, the host cell invasion, the intracellular replication, and the stage conversion from tachyzoites to bradyzoites was investigated in mixed cultures of dissociated CNS cells from cortices of Wistar rat embryos. Two days post infection (p.i.) with T. gondii tachyzoites, intracellular parasites were detected within neurons, astrocytes, and microglial cells as assessed by double immunofluorescence and confocal microscopy. Quantitative analyses revealed that approximately 10% of neurons and astrocytes were infected with T. gondii, while 30% of the microglial cells harbored intracellular parasites. However, the replication of T. gondii within microglial cells was considerably diminished, since 93% of the parasitophorous vacuoles (PV) contained only one to two parasites which often appeared degenerated. This toxoplasmacidal activity was not abrogated after treatment with NO synthase inhibitors or neutralization of IFN-gamma production. In contrast, 30% of the PV in neurons and astrocytes harbored clearly proliferating parasites with at least four to eight parasites per vacuole. Four days p.i. with tachyzoites of T. gondii, bradyzoites were detected within neurons, astrocytes, and microglial cells of untreated cell cultures. However, the majority of bradyzoite-containing vacuoles were located in neurons. Spontaneous differentiation to the bradyzoite stage was not inhibited after addition of NO synthase inhibitors or neutralization of IFN-gamma. In conclusion, our results indicate that intracerebral replication of T. gondii as well as spontaneous conversion from the tachyzoite to the bradyzoite stage is sustained predominantly by neurons and astrocytes, whereas microglial cells may effectively inhibit parasitic growth within the CNS.  相似文献   

11.
The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK) cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/-) mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.  相似文献   

12.
13.
During Toxoplasma gondii infection, macrophages, dendritic cells, and neutrophils are important sources of pro-inflammatory cytokines from the host. To counteract the pro-inflammatory activities, T. gondii is known to have several mechanisms inducing down-regulation of the host immunity. In the present study, we analyzed the production of proand anti-inflammatory cytokines from a human myelomonocytic cell line, THP-1 cells, in response to treatment with T. gondii lysate or lipopolysaccharide (LPS). Treatment of THP-1 cells with LPS induced production of IL-12, TNF-alpha, IL-8, and IL-10. Co-treatment of THP-1 cells with T. gondii lysate inhibited the LPS-induced IL-12, IL-8 and TNF-alpha expression, but increased the level of IL-10 synergistically. IL-12 and IL-10 production was down-regulated by anti-human toll-like receptor (TLR)-2 and TLR4 antibodies. T. gondii lysate triggered nuclear factor (NF)-kappaB-dependent IL-8 expression in HEK293 cells transfected with TLR2. It is suggested that immunosuppression induced by T. gondii lysate treatment might occur via TLR2-mediated NF-kappaB activation.  相似文献   

14.
Long-term resistance to Toxoplasma gondii is dependent on the development of parasite-specific T cells that produce IFN-gamma. CD28 is a costimulatory molecule important for optimal activation of T cells, but CD28(-/-) mice are resistant to T. gondii, demonstrating that CD28-independent mechanisms regulate T cell responses during toxoplasmosis. The identification of the B7-related protein 1/inducible costimulator protein (ICOS) pathway and its ability to regulate the production of IFN-gamma suggested that this pathway may be involved in the CD28-independent activation of T cells required for resistance to T. gondii. In support of this hypothesis, infection of wild-type or CD28(-/-) mice with T. gondii resulted in the increased expression of ICOS by activated CD4(+) and CD8(+) T cells. In addition, both costimulatory pathways contributed to the in vitro production of IFN-gamma by parasite-specific T cells and when both pathways were blocked, there was an additive effect that resulted in almost complete inhibition of IFN-gamma production. Although in vivo blockade of the ICOS costimulatory pathway did not result in the early mortality of wild-type mice infected with T. gondii, it did lead to increased susceptibility of CD28(-/-) mice to T. gondi associated with reduced serum levels of IFN-gamma, increased parasite burden, and increased mortality compared with the control group. Together, these results identify a critical role for ICOS in the protective Th1-type response required for resistance to T. gondii and suggest that ICOS and CD28 are parallel costimulatory pathways, either of which is sufficient to mediate resistance to this intracellular pathogen.  相似文献   

15.
The importance of IFN-gamma in regulating the host CD8+ T cell response during microbial infection has not been delineated. Mice deficient for the p40 chain of the IL-12 heterodimer have impaired IFN-gamma production and are susceptible to infection with the intracellular parasite Toxoplasma gondii. The administration of exogenous IFN-gamma to parasite-infected p40-/- mice increases survival and up-regulates the depressed CD8+ T cell response following infection. CD8+ T cells isolated from cytokine-treated p40-/- mice exhibit an increase in both precursor CTL frequency and IFN-gamma production compared with untreated controls. The enhancement of the CD8+ T cell response is independent of CD4+ T cell help. These CD8+ T cells induce protective immunity against a lethal challenge when adoptively transferred into naive p40-/- and IFN-gamma-/- mice. These observations indicate that IFN-gamma can regulate the CD8+ T cell response during T. gondii infection.  相似文献   

16.
Ligation of the death receptor Fas/CD95 activates an apoptotic cascade and plays critical roles during infectious diseases. Previous work has established that infection with the intracellular parasite Toxoplasma gondii renders cells resistant to multiple inducers of apoptosis. However, the effect of T. gondii on the death receptor pathway is poorly characterized. Here we have determined the impact of the parasite on apoptosis in type I cells that transduce Fas/CD95 engagement via the death receptor pathway without the need of a mitochondrial amplification loop. The results have shown that T. gondii significantly reduced Fas/CD95-triggered apoptosis by impairing activation of the initiator caspase 8. Parasitic infection diminished the cellular amount of procaspase 8, resulting in its decreased recruitment to the death-inducing signalling complex and the impaired activation of effector caspases. Remarkably, downregulation of caspase 8 protein in T. gondii-infected cells also occurred in the absence of Fas/CD95 engagement and was associated with the appearance of non-canonical caspase 8 cleavage fragments. Distinct parasite proteins were associated with caspase 8 and its proteolytic fragments. These findings indicate that T. gondii aberrantly processes and finally degrades the initiator caspase 8, thereby, blocking Fas/CD95-mediated apoptosis which signals independently of the apoptogenic function of host cell mitochondria.  相似文献   

17.
Toxoplasma gondii is an intracellular parasite that survives and multiplies in professional phagocytes such as macrophages. Therefore, T. gondii has to cope with the panel of antimicrobial host immune mechanisms, among which IFN-gamma plays a crucial role. We report in this study that in vitro infection of murine macrophages with viable, but not with inactivated, parasites results in inhibition of IFN-gamma signaling within the infected cells. Thus, infection of RAW264.7 macrophages with tachyzoites inhibited IFN-gamma-induced STAT-1 tyrosine phosphorylation, mRNA expression of target genes, and secretion of NO. These effects were dependent on direct contact of the host cells with living parasites and were not due to secreted intermediates. In parallel, we report the induction of suppressor of cytokine signaling-1 (SOCS-1), which is a known feedback inhibitor of IFN-gamma receptor signaling. SOCS-1 was induced directly by viable parasites. SOCS overexpression in macrophages did not affect tachyzoite proliferation per se, yet abolished the inhibitory effects of IFN-gamma on parasite replication. The inhibitory effects of T. gondii on IFN-gamma were diminished in macrophages from SOCS-1-/- mice. The results suggest that induction of SOCS proteins within phagocytes due to infection with T. gondii contributes to the parasite's immune evasion strategies.  相似文献   

18.
TLRs expressed by a variety of cells, including epithelial cells, B cells, and dendritic cells, are important initiators of the immune response following stimulation with various microbial products. Several of the TLRs require the adaptor protein, MyD88, which is an important mediator for the immune response following Toxoplasma gondii infection. Previously, TLR9-mediated innate immune responses were predominantly associated with ligation of unmethylated bacterial CpG DNA. In this study, we show that TLR9 is required for the Th1-type inflammatory response that ensues following oral infection with T. gondii. After oral infection with T. gondii, susceptible wild-type (WT; C57BL/6) but not TLR9(-/-) (B6 background) mice develop a Th1-dependent acute lethal ileitis; TLR9(-/-) mice have higher parasite burdens than control WT mice, consistent with depressed IFN-gamma-dependent parasite killing. A reduction in the total T cell and IFN-gamma-producing T cell frequencies was observed in the lamina propria of the TLR9(-/-) parasite-infected mice. TLR9 and type I IFN production was observed by cells from infected intestines in WT mice. TLR9 expression by dendritic cell populations is essential for their expansion in the mesenteric lymph nodes of infected mice. Infection of chimeric mice deleted of TLR9 in either the hemopoietic or nonhemopoietic compartments demonstrated that TLR9 expression by cells from both compartments is important for efficient T cell responses to oral infection. These observations demonstrate that TLR9 mediates the innate response to oral parasite infection and is involved in the development of an effective Th1-type immune response.  相似文献   

19.
20.
The obligate intracellular protozoan Toxoplasma gondii resides within a specialized parasitophorous vacuole (PV), isolated from host vesicular traffic. In this study, the origin of parasite cholesterol was investigated. T. gondii cannot synthesize sterols via the mevalonate pathway. Host cholesterol biosynthesis remains unchanged after infection and a blockade in host de novo sterol biosynthesis does not affect parasite growth. However, simultaneous limitation of exogenous and endogenous sources of cholesterol from the host cell strongly reduces parasite replication and parasite growth is stimulated by exogenously supplied cholesterol. Intracellular parasites acquire host cholesterol that is endocytosed by the low-density lipoprotein (LDL) pathway, a process that is specifically increased in infected cells. Interference with LDL endocytosis, with lysosomal degradation of LDL, or with cholesterol translocation from lysosomes blocks cholesterol delivery to the PV and significantly reduces parasite replication. Similarly, incubation of T. gondii in mutant cells defective in mobilization of cholesterol from lysosomes leads to a decrease of parasite cholesterol content and proliferation. This cholesterol trafficking to the PV is independent of the pathways involving the host Golgi or endoplasmic reticulum. Despite being segregated from the endocytic machinery of the host cell, the T. gondii vacuole actively accumulates LDL-derived cholesterol that has transited through host lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号