首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconciliation of apparently contradictory experimental results obtained on the quinol: fumarate reductase (QFR), a dihaem-containing respiratory membrane protein complex from Wolinella succinogenes, was previously obtained by the proposal of the so-called E-pathway hypothesis. According to this hypothesis, transmembrane electron transfer via the haem groups is strictly coupled to co-transfer of protons via a transiently established, novel pathway, proposed to contain the side chain of residue Glu-C180 and the distal haem ring-C propionate as the most prominent components. This hypothesis has recently been supported by both theoretical and experimental results. Multiconformation continuum electrostatics calculations predict Glu-C180 to undergo a combination of proton uptake and conformational change upon haem reduction. Strong experimental support for the proposed role of Glu-C180 in the context of the “E-pathway hypothesis” is provided by the effects of replacing Glu-C180 with Gln or Ile by site-directed mutagenesis, the consequences of these mutations for the viability of the resulting mutants, together with the structural and functional characterisation of the corresponding variant enzymes, and the comparison of redox-induced Fourier-transform infrared (FTIR) difference spectra for the wild type and Glu-C180 → Gln variant. A possible haem propionate involvement has recently been supported by combining 13C-haem propionate labelling with redox-induced FTIR difference spectroscopy.  相似文献   

2.
Mileni M  Haas AH  Mäntele W  Simon J  Lancaster CR 《Biochemistry》2005,44(50):16718-16728
Quinol:fumarate reductase (QFR) is the terminal enzyme of anaerobic fumarate respiration. This membrane protein complex couples the oxidation of menaquinol to menaquinone to the reduction of fumarate to succinate. Although the diheme-containing QFR from Wolinella succinogenes is known to catalyze an electroneutral process, its three-dimensional structure at 2.2 A resolution and the structural and functional characterization of variant enzymes revealed locations of the active sites that indicated electrogenic catalysis. A solution to this apparent controversy was proposed with the so-called "E-pathway hypothesis". According to this, transmembrane electron transfer via the heme groups is strictly coupled to a parallel, compensatory transfer of protons via a transiently established pathway, which is inactive in the oxidized state of the enzyme. Proposed constituents of the E-pathway are the side chain of Glu C180 and the ring C propionate of the distal heme. Previous experimental evidence strongly supports such a role of the former constituent. Here, we investigate a possible heme-propionate involvement in redox-coupled proton transfer by a combination of specific (13)C-heme propionate labeling and Fourier transform infrared (FTIR) difference spectroscopy. The labeling was achieved by creating a W. succinogenes mutant that was auxotrophic for the heme-precursor 5-aminolevulinate and by providing [1-(13)C]-5-aminolevulinate to the medium. FTIR difference spectroscopy revealed a variation on characteristic heme propionate vibrations in the mid-infrared range upon redox changes of the distal heme. These results support a functional role of the distal heme ring C propionate in the context of the proposed E-pathway hypothesis of coupled transmembrane electron and proton transfer.  相似文献   

3.
The E-pathway of transmembrane proton transfer has been demonstrated previously to be essential for catalysis by the diheme-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes. Two constituents of this pathway, Glu-C180 and heme bD ring C (bD-C-) propionate, have been validated experimentally. Here, we identify further constituents of the E-pathway by analysis of molecular dynamics simulations. The redox state of heme groups has a crucial effect on the connectivity patterns of mobile internal water molecules that can transiently support proton transfer from the bD-C-propionate to Glu-C180. The short H-bonding paths formed in the reduced states can lead to high proton conduction rates and thus provide a plausible explanation for the required opening of the E-pathway in reduced QFR. We found evidence that the bD-C-propionate group is the previously postulated branching point connecting proton transfer to the E-pathway from the quinol-oxidation site via interactions with the heme bD ligand His-C44. An essential functional role of His-C44 is supported experimentally by site-directed mutagenesis resulting in its replacement with Glu. Although the H44E variant enzyme retains both heme groups, it is unable to catalyze quinol oxidation. All results obtained are relevant to the QFR enzymes from the human pathogens Campylobacter jejuni and Helicobacter pylori.  相似文献   

4.
Haas AH  Sauer US  Gross R  Simon J  Mäntele W  Lancaster CR 《Biochemistry》2005,44(42):13949-13961
Electrochemically induced static FTIR difference spectroscopy has been employed to investigate redox-driven protonation changes of individual amino acid residues in the quinol:fumarate reductase (QFR) from Wolinella succinogenes. The difference spectra presented were taken in the mid-infrared region from 1800 to 1000 cm(-1), and the signals obtained represent transitions between the reduced and oxidized states of the enzyme. Analysis of the difference spectra shows evidence for structural reorganizations of the polypeptide backbone upon the induced redox reaction. Furthermore, spectral contributions were found above 1710 cm(-1) where stretching vibrations of protonated carboxyl groups from aspartic or glutamic acid side chains absorb. With the help of site-directed mutagenesis and hydrogen/deuterium isotope exchange, it was possible to identify amino acid residue Glu C180, which is located in the membrane-spanning, diheme-containing subunit C of QFR, as being partially responsible for the derivative-shaped spectral feature with a peak/trough at 1741/1733 cm(-1) in the reduced-minus-oxidized difference spectrum. This signal pattern is interpreted as a superposition of a protonation/deprotonation and a change of the hydrogen-bonding environment of Glu C180. This residue is the principal constituent of the recently proposed "E-pathway hypothesis" of coupled transmembrane proton and electron transfer in QFR [Lancaster, C. R. D. (2002) Biochim. Biophys. Acta 1565, 215-231]. Thus, the study presented yields experimental evidence which supports a key role of Glu C180 within the framework of the E-pathway hypothesis.  相似文献   

5.
The structure of the respiratory membrane protein complex quinol:fumarate reductase (QFR) from Wolinella succinogenes has been determined by X-ray crystallography at 2.2-A resolution [Nature 402 (1999) 377]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulfur clusters, and two haem b groups), a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. The structure of the membrane-integral dihaem cytochrome b reveals that all transmembrane helical segments are tilted with respect to the membrane normal. The "four-helix" dihaem binding motif is very different from other dihaem-binding transmembrane four-helix bundles, such as the "two-helix motif" of the cytochrome bc(1) complex and the "three-helix motif" of the formate dehydrogenase/hydrogenase group. The gamma-hydroxyl group of Ser C141 has an important role in stabilising a kink in transmembrane helix IV. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which was found to be essential for menaquinol oxidation [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13051]. The distal location of this residue in the structure indicates that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could in principle be associated with the generation of a transmembrane electrochemical potential. However, it is suggested here that in W. succinogenes QFR, this electrogenic effect is counterbalanced by the transfer of two protons via a proton transfer pathway (the "E-pathway") in concert with the transfer of two electrons via the membrane-bound haem groups. According to this "E-pathway hypothesis", the net reaction catalysed by W. succinogenes QFR does not contribute directly to the generation of a transmembrane electrochemical potential.  相似文献   

6.
The role of haem in the activity of cystathionine β-synthase (CBS) is reviewed and a hypothesis postulating multiple effects of haem on enzyme activity under conditions of haem excess or deficiency is proposed, with implications for some therapies of acute hepatic porphyrias. CBS utilises both haem and pyridoxal 5′-phosphate (PLP) as cofactors. Although haem does not participate directly in the catalytic process, it is vital for PLP binding to the enzyme and potentially also for CBS stability. Haem deficiency can therefore undermine CBS activity by impairing PLP binding and facilitating CBS degradation. Excess haem can also impair CBS activity by inhibiting it via CO resulting from haem induction of haem oxygenase 1 (HO 1), and by induction of a functional vitamin B6 deficiency following activation of hepatic tryptophan 2,3-dioxygenase (TDO) and subsequent utilisation of PLP by enhanced kynurenine aminotransferase (KAT) and kynureninase (Kynase) activities. CBS inhibition results in accumulation of the cardiovascular risk factor homocysteine (Hcy) and evidence is emerging for plasma Hcy elevation in patients with acute hepatic porphyrias. Decreased CBS activity may also induce a proinflammatory state, inhibit expression of haem oxygenase and activate the extrahepatic kynurenine pathway (KP) thereby further contributing to the Hcy elevation. The hypothesis predicts likely changes in CBS activity and plasma Hcy levels in untreated hepatic porphyria patients and in those receiving hemin or certain gene-based therapies. In the present review, these aspects are discussed, means of testing the hypothesis in preclinical experimental settings and porphyric patients are suggested and potential nutritional and other therapies are proposed.  相似文献   

7.
The quinol:fumarate reductase of Wolinella succinogenes binds a low- and a high-potential heme b group in its transmembrane subunit C. Both hemes are part of the electron transport chain between the two catalytic sites of this redox enzyme. The oxidation-reduction midpoint potentials of the hemes are well established but their assignment in the structure has not yet been determined. By simulating redox titrations, using continuum electrostatics calculations, it was possible to achieve an unequivocal assignment of the low- and high-potential hemes to the distal and proximal positions in the structure, respectively. Prominent features governing the differences in midpoint potential between the two hemes are the higher loss of reaction field energy for the proximal heme and the stronger destabilization of the oxidized form of the proximal heme due to several buried Arg and Lys residues. According to the so-called "E-pathway hypothesis", quinol:fumarate reductase has previously been postulated to exhibit a novel coupling of transmembrane electron and proton transfer. Simulation of heme b reduction indicates that the protonation state of the conserved residue Glu C180, predicted to play a key role in this process, indeed depends on the redox state of the hemes. This result clearly supports the E-pathway hypothesis.  相似文献   

8.
Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.  相似文献   

9.
The significance of the exposed haem edge in cytochrome c was directly probed by chemically modifying the partially exposed haem propionate in the crevice region around residues threonine-78 and threonine-49. Reaction of tuna heart cytochrome c with a water-soluble carbodi-imide at pH 3.7 in the absence of any added nucleophilic base leads to the covalent addition of substituted N-acylureas to the protein at two sites. One site has been shown to be a haem propionate by isotope-tracer and i.r.-spectral analysis of haem purified from the apoprotein. The other site is aspartial acid-62 on the back of the molecule. The modified cytochrome c demonstrates abnormal properties, including auto-oxidizability, a reduction potential of + 105mV, a reversible transition to a high-spin species below pH 5.3, no 695 nm charge-transfer band in the ferric state and abnormal binding to mitochondrial membranes. The derivative does react with cytochrome oxidase in deoxycholate-treated submitochondrial particles or in purified preparations with a specific activity of 43-65% compared with that obtained with native cytochrome c. The results are consistent with the view that an intact haem crevice is essential for normal values for physiochemical characteristics, but the significant residual enzymic activity suggests that the electron-transfer interface and/or the cytochrome oxidase-binding site cannot be localized solely in the region of the exposed haem propionate.  相似文献   

10.
Molecular dynamics simulations of the wild-type and variant forms of the mouse ferrochelatase in complex with the product (haem) have been performed using the GROMOS96 force field, in the NpT ensemble. Ferrochelatase, the last enzyme in the catalytic pathway of the haem biosynthesis, catalyses the reaction of insertion of a ferrous ion into protoporphyrin IX by distorting the planar geometry of the latter reactant. The simulations presented aim at understanding the role of active-site residues in this catalytic process. Analysis of the simulation trajectories explains the consequences of the mutations introduced and sheds more light on the role of the His209 residue in porphyrin macrocycle distortion. The function of residues coordinating propionate groups of the haem molecule is discussed in terms of stability of the substrate and product complexes.  相似文献   

11.
最近吴征镒等发表的被子植物“多系_多期_多域”的“八纲”新分类系统,是以该系 统作者自己人为截取早白垩世时间横断面并认为在这个横断面上存在8条主传代线为基础建 立的。“八纲系统”在祖先式样及其起源时间和地点方面缺乏证据,各主传代线相互之间及 其与被子植物共同祖先的关系也基本没有说明。由于没有接受植物系统发育重建研究中共同 遵守的共同祖先原理,而且混淆使用了“单系”和“多系”的概念,可以认为“八纲 系统”是人为性很强的被子植物分类系统。  相似文献   

12.
C3-like ADP-ribosyltransferaseses are produced by Clostridium species, Bacillus cereus, and various Staphylococcus aureus strains. The exoenzymes modify the low-molecular-mass GTPases RhoA, B, and C. In structural studies of C3-like exoenzymes, an ARTT-motif (ADP-ribosylating turn-turn motif) was identified that appears to be involved in substrate specificity and recognition (Han, S., Arvai, A. S., Clancy, S. B., Tainer, J. A. (2001) J. Mol. Biol. 305, 95-107). Exchange of Gln217, which is a key residue of the ARTT-motif, to Glu in C3 from Clostridium limosum results in inhibition of ADP-ribosyltransferase activity toward RhoA. The mutant protein is still capable of NAD-binding and possesses NAD+ glycohydrolase activity. Whereas recombinant wild-type C3 modifies Rho proteins specifically at an asparagine residue (Asn41), Gln217Glu-C3 is capable of ADP-ribosylation of poly-arginine but not poly-asparagine. Soybean trypsin inhibitor, a model substrate for many arginine-specific ADP-ribosyltransferases, is modified by the Gln217Glu-C3 transferase. Also in C3 ADP-ribosyltransferases from Clostridium botulinum and B. cereus, the exchange of the equivalent Gln residue to Glu blocked asparagine modification of RhoA but elicited arginine-specific ADP-ribosylation. Moreover, the Gln217Glu-C3lim transferase was able to ADP-ribosylate recombinant wild-type C3lim at Arg86, resulting in decrease in ADP-ribosyltransferase activity of the wild-type enzyme. The data indicate that the exchange of one amino acid residue in the ARTT-motif turns the asparagine-modifying ADP-ribosyltransferases of the C3 family into arginine-ADP-ribosylating transferases.  相似文献   

13.
The alkaline transitions of tuna and horse ferricytochromes c and the trifluoroacetyl-lysine derivative of horse ferricytochrome c have been studied by Fourier-transform (FT) i.r. spectroscopy. The spectral perturbations resulting from the transition have been interpreted by reference to FT i.r. data on simple carboxylic-acid-containing compounds and a bacterial cytochrome c551 in which a haem propionate ionizes without causing a significant conformational change. The analysis strongly suggests that ionization of a haem propionate of mitochondrial cytochrome c triggers the alkaline conformation change.  相似文献   

14.
Gorrell A  Ferry JG 《Biochemistry》2007,46(49):14170-14176
Acetate kinase, a member of the acetate and sugar kinase/Hsc 70/actin (ASKHA) structural superfamily, catalyzes the reversible transfer of the gamma-phosphoryl group from ATP to acetate, yielding ADP and acetyl phosphate. A catalytic mechanism for the enzyme from Methanosarcina thermophila has been proposed on the basis of the crystal structure and kinetic analyses of amino acid replacement variants. The Gln43Trp variant was generated to further investigate the catalytic mechanism via changes in fluorescence. The dissociation constants for ADP.Mg2+ and ATP.Mg2+ ligands were determined for the Gln43Trp variant and double variants generated by replacing Arg241 and Arg91 with Ala and Lys. The dissociation constants and kinetic analyses indicated roles for the arginines in transition state stabilization for catalysis but not in nucleotide binding. The results also provide the first experimental evidence for domain motion and evidence that catalysis does not occur as two independent active sites of the homodimer but the active site activities are coordinated in a half-the-sites manner.  相似文献   

15.
G R Moore 《FEBS letters》1983,161(2):171-175
An assessment is made of the proposal: electrostatic interactions between the ferric ion of oxidised cytochrome c and its haem propionate sidechains assists in determining the value of the redox potential and plays an important role in the redox state conformation change. Differences between the properties of homologous cytochromes are proposed to be due to differences associated with the charge on their haem propionates.  相似文献   

16.
The photooxidation of c559, c556 and c552 hemes in Rhodopseudomonas viridis cytochrome has been characterized by light-induced FTIR difference spectroscopy. Apart from the common features at 1659 cm-1 and 1561/1551 cm-1 which could arise from one (or possibly two) peptide bond(s), no evidence for major structural rearrangement of the polypeptide backbone was observed. A significant difference with respect to redox-induced FTIR spectra of cytochrome c is the absence of the Tyr marker at 1514/1518 cm-1 in Rps. viridis cytochrome, indicating that the localized shift of a Tyr side chain observed between ferro- and ferri-cytochrome c does not occur in Rps. viridis cytochrome.  相似文献   

17.
Spectral and other studies on the intestinal haem receptor of the pig   总被引:2,自引:0,他引:2  
We recently demonstrated the presence of a Triton-solubilized high-affinity haem binder on the pig duodenal brush border membrane. The association of haem to the binding factor was determined using radioactive haem and is now studied by a spectrophotometric technique. The binding alters the Soret absorption band of haem from 395 nm to 413 nm. The dissociation constant for the binding of haem to the solubilized binding factor was estimated to be about 10(-9) M by difference spectroscopy. Human serum albumin could not prevent the solubilized binding factor from binding haem. Trypsin digestion destroyed the binder.  相似文献   

18.
In this study a combined electrochemical and FTIR spectroscopic approach was applied to monitor the binding of stigmatellin, a Q(o) site inhibitor of the cytochrome bc(1) complex from Saccharomyces cerevisiae. Natural stigmatellin A induced clear shifts in the redox-induced FTIR difference spectra. For data interpretation a stigmatellin derivative (UST) with the conjugated trienes replaced by an aliphatic tail was synthesized, and the carbonyl group shown in crystal structures to interact with His181, the [2Fe-2S] ligand of the Rieske, was specifically (13)C labeled. Electrochemically induced FTIR difference spectra of the inhibitors in CH(3)OD were obtained and revealed signals characteristic for the oxidized and reduced forms of the labeled and unlabeled compounds. On the basis of signals from the inhibitors alone, the binding of the inhibitor to the bc(1) complex was monitored. Direct evidence for the interaction of the carbonyl group with the protein was provided by the observed shift of the nu(C=O) vibrational mode of about 10 cm(-1). In addition, redox-dependent reorganizations of the protein were identified, including protonation changes of acidic residues at 1746 and 1734 cm(-1). The conformational changes observed upon inhibitor binding are discussed with respect to the crystal structures and proposed mechanistic models [Hunte, C., Koepke, J., Lange, C., Rossmanith, T., and Michel, H. (2000) Structure 8, 669-684; Palsdottir, H., Lojero, C. G., Trumpower, B. L., and Hunte, C. (2003) J. Biol. Chem. 278, 31303-31311].  相似文献   

19.
5-Aminolaevulinate containing tritium at C-3 and C-5 was converted into haem using a preparation of anaemic chicken blood. The biosynthetic haem was degraded to ethylmethyl maleimide and haematinic acid which had relative tritium radioactivity of 0.58 and 1.0 respectively. These results indicated that in the formation of the vinyl group of haem only one of the hydrogen atoms from the beta-positions of two propionate side chains of coproporphyrinogne III was removed. Haem was also biosynthesised from [(3R)-3H1]2-oxoglutarate. The determination of relative radioactivity in ethylmethyl maleimide and haematinic acid endorsed the above conclusion and further indicated that the pro-R hydrogen atoms located at the beta-positions of the propionate side chains are retained in haem biosynthesis. In order to explore the status of hydrogen atoms located at the alpha-positions of propionate side chains haem was biosynthesised using [2RS)-3H2]succinate, [(2R)-3H1]succinate and [(2S)-3H1]succinate. Degradation of the three samples of haem into ethylmethyl maleimide and haematinic acid showed that both the vinyl groups of haem are formed through the loss of pro-S hydrogen atoms located at the beta-positions of the propionic acid side chains of coproporphyrinogen III. The results further showed that the hydrogen atoms located at the alpha-positions of the side chains are not involved in the biosynthesis of haem. Various mechanisms for the formation of vinyl groups in the biosynthesis are discussed.  相似文献   

20.
We tested the hypothesis that the MLXIPL rs3812316 variant predicts plasma triglyceride (TG) levels. We compared three groups of adult individuals: 162 persons with TG > 10 mmol/L, 266 persons with TG < 0.65 mmol/L, and 2,043 population-based controls (range of TG concentrations 0.7–8.7 mmol/L). We found a small difference in the frequency of the Gln allele carriers between population controls (20.4%) and persons with low TG (26.3%, P = 0.033). We found no difference between individuals with high TG and population controls, and there was no association between the MLXIPL variant and plasma TG levels among the population controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号