首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli K1 traversal of the human brain microvascular endothelial cells (HBMEC) that constitute the blood-brain barrier (BBB) is a complex process involving E. coli adherence to and invasion of HBMEC. In this study, we demonstrated that human transforming growth factor-beta-1 (TGF-beta1) increases E. coli K1 adherence, invasion, and transcytosis in HBMEC. In addition, TGF-beta1 increases RhoA activation and enhances actin condensation in HBMEC. We have previously shown that E. coli K1 invasion of HBMEC requires phosphatidylinositol-3 kinase (PI3K) and RhoA activation. TGF-beta1 increases E. coli K1 invasion in PI3K dominant-negative HBMEC, but not in RhoA dominant-negative HBMEC, indicating that TGF-beta1-mediated increase in E. coli K1 invasion is RhoA-dependent, but not PI3K-dependent. Our findings suggest that TGF-beta1 treatment of HBMEC increases E. coli K1 adherence, invasion, and transcytosis, which are probably dependent on RhoA.  相似文献   

2.
Shigella, the causative agent of bacillary dysentery, is capable of inducing the large scale membrane ruffling required for the bacterial invasion of host cells. Shigella secrete a subset of effectors via the type III secretion system (TTSS) into the host cells to induce membrane ruffling. Here, we show that IpgB1 is secreted via the TTSS into epithelial cells and plays a major role in producing membrane ruffles via stimulation of Rac1 and Cdc42 activities, thus promoting bacterial invasion of epithelial cells. The invasiveness of the ipgB1 mutant was decreased to less than 50% of the wild-type level (100%) in a gentamicin protection or plaque forming assay. HeLa cells infected with the wild-type or a IpgB1-hyperproducing strain developed membrane ruffles, with the invasiveness and the scale of membrane ruffles being comparable with the level of IpgB1 production in bacteria. Upon expression of EGFP-IpgB1 in HeLa cells, large membrane ruffles are extended, where the EGFP-IpgB1 was predominantly associated with the cytoplasmic membrane. The IpgB1-mediated formation of ruffles was significantly diminished by expressing Rac1 small interfering RNA and Cdc42 small interfering RNA or by treatment with GGTI-298, an inhibitor of the geranylgeranylation of Rho GTPases. When IpgB1 was expressed in host cells or wild-type Shigella-infected host cells, Rac1 and Cdc42 were activated. The results thus indicate that IpgB1 is a novel Shigella effector involved in bacterial invasion of epithelial cells via the activation of Rho GTPases.  相似文献   

3.
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) requires the reorganization of host cytoskeleton at the sites of bacterial entry. Both actin and myosin constitute the cytoskeletal architecture. We have previously shown that myosin light chain (MLC) phosphorylation by MLC kinase is regulated during E. coli invasion by an upstream kinase, p21-activated kinase 1 (PAK1), which is an effector protein of Rac and Cdc42 GTPases, but not of RhoA. Here, we report that the binding of only Rac1 to PAK1 decreases in HBMEC upon infection with E. coli K1, which resulted in increased phosphorylation of MLC. Overexpression of a constitutively active (cAc) form of Rac1 in HBMEC blocked the E. coli invasion significantly, whereas overexpression of a dominant negative form had no effect. Increased PAK1 phosphorylation was observed in HBMEC expressing cAc-Rac1 with a concomitant reduction in the phosphorylation of MLC. Immunocytochemistry studies demonstrated that the inhibition of E. coli invasion into cAc-Rac1/HBMEC is due to lack of phospho-MLC recruitment to the sites of E. coli entry. Taken together the data suggest that E. coli modulates the binding of Rac1, but not Cdc42, to PAK1 during the invasion of HBMEC.  相似文献   

4.
Here we demonstrate that the geranylgeranyltransferase-I inhibitor GGTI-298 inhibits the RhoB pathway and disrupts stress fiber and focal adhesion formation in NIH-3T3 cells. Farnesylated V14RhoB-CAIM (resistant to GGTI-298), but not geranylgeranylated V14RhoB (-CLLL), prevented inhibition of actin stress fiber and focal adhesion formation, underlining the critical role of RhoB. In contrast, farnesylated, V14RhoA (-CVLS) was unable to prevent effects of GGTI 298 on cytoskeleton organization. Furthermore, the ability of GGTI-298 to induce p21WAF and to block cells in the G0/G1 phase of the cell cycle was also prevented by farnesylated V14RhoB but not by farnesylated V14RhoA. Moreover, treatment with GGTI-298 of cells expressing farnesylated RhoB results in accumulation of these cells in the G2/M phase. Therefore, the RhoB pathway is a critical target of GGTI-298.  相似文献   

5.
Here we demonstrate that the geranylgeranyltransferase-I inhibitor GGTI-298 inhibits the RhoB pathway and disrupts stress fiber and focal adhesion formation in NIH-3T3 cells. Farnesylated (V14)RhoB-CAIM (resistant to GGTI-298), but not geranylgeranylated (V14)RhoB (-CLLL), prevented inhibition of actin stress fiber and focal adhesion formation, underlining the critical role of RhoB. In contrast, farnesylated, (V14)RhoA (-CVLS) was unable to prevent effects of GGTI 298 on cytoskeleton organization. Furthermore, the ability of GGTI-298 to induce p21(WAF) and to block cells in the G(0)/G(1) phase of the cell cycle was also prevented by farnesylated (V14)RhoB but not by farnesylated (V14)RhoA. Moreover, treatment with GGTI-298 of cells expressing farnesylated RhoB results in accumulation of these cells in the G(2)/M phase. Therefore, the RhoB pathway is a critical target of GGTI-298.  相似文献   

6.
Enteropathogenic Escherichia coli delivers a subset of effectors into host cells via a type III secretion system, and this step is required for the progression of disease. Here, we show that the type III effectors, EspG and its homolog Orf3, trigger actin stress fiber formation and the destruction of the microtubule networks beneath adherent bacteria. Both effectors were shown to possess the ability to interact with tubulins, and to stimulate microtubule destabilization in vitro. A recent study showed that microtubule-bound GEF-H1, a RhoA-specific guanine nucleotide exchange factor, was converted to its active form by microtubule destabilization, and this sequence of events resulted in RhoA stimulation. Indeed, EspG- and Orf3-induced stress fiber formation was inhibited by the expression of dominant-negative forms of GEF-H1 and RhoA, but not of Rac1 and Cdc42, and by treatment with a ROCK inhibitor. These results indicate that the impact of EspG/Orf3 on microtubule networks triggers the activation of the RhoA-ROCK signaling pathway via GEF-H1 activity. This report reveals for the first time that a pathogen can exploit the host factor GEF-H1.  相似文献   

7.
The efficient engulfment of apoptotic cells by professional or nonprofessional phagocytes is critical to maintain mammalian homeostasis. To identify molecules involved in the engulfment of apoptotic cells, we established a retrovirus-based expression cloning system coupled with the engulfment assay. By screening a cDNA library of a mouse macrophage cell line, we identified two small GTPase family members (RhoG and Rab5) that enhanced the engulfment of apoptotic cells. By examining other small GTPase family members, we found that Rac1 enhanced the engulfment of apoptotic cells, whereas RhoA inhibited the process. Accordingly, the expression of a dominant-negative form of RhoG or Rac1 in primary macrophage cultures severely reduced the ability of the macrophages to engulf apoptotic cells, and a dominant-negative form of RhoA enhanced the process. These results indicated that the efficient engulfment of apoptotic cells requires the concerted action of small GTPase family members. We demonstrated previously that NIH3T3 cells expressing the alphav beta3 integrin efficiently engulf apoptotic cells in the presence of milk fat globule epidermal growth factor 8 via a phosphatidylserine-dependent mechanism. The dominant-negative form of RhoG or Rac1 inhibited this process, which suggested RhoG and Rac1 are also involved in the integrin-mediated engulfment.  相似文献   

8.
The group B streptococcus (GBS) is an important human pathogen with the ability to cause invasive disease. To do so, the bacteria must invade host cells. It has been well documented that GBS are able to invade a variety of nonphagocytic host cell types, and this process is thought to involve a number of pathogen-host cell interactions. While some of the molecular aspects of the GBS-host cell invasion process have been characterized, many events still remain unclear. The objective of this investigation was to evaluate the role of the Rho-family GTPases Rac, Rho, and Cdc42 in GBS invasion into epithelial cells. The epithelial cell invasion process was modeled using HeLa 229 cell culture. Treatment of HeLa cells with 10 microM compactin, a pan-GTPase inhibitor, abolished GBS internalization, suggesting that GTPases are involved in the GBS invasion process. The addition of Toxin B or exoenzyme C3 to HeLa cells before GBS infection reduced invasion by 50%, further suggesting that the Rho-family GTPases are involved in GBS entry. Examining invasion of GBS into HeLa cells with altered genetic backgrounds was used to confirm these findings; GBS invasion into HeLa cells transiently transfected with dominant negative Rac1, Cdc42, or RhoA reduced invasion by 75%, 51%, and 42%, respectively. Results of this study suggest that the Rho-family GTPases are required for efficient invasion of HeLa cells by GBS.  相似文献   

9.
Mechanical stretch is essential for the cardiac growth. The exposure of cardiac myocytes to the mechanical stretch leads to the cell alignment in parallel to the stretch direction, determining the cell polarity, though it remains to be addressed how mechanical stretch regulates cell orientation. In the present study, we investigated the signal transduction pathways responsible for the cell orientation response to mechanical stretch, focusing on Rho family proteins. Neonatal rat cardiomyocytes were cultured on silicon chambers and exposed to artificial uniaxial cyclic stretch. The pull-down assays revealed that Rac1 was rapidly activated by stretch, but not RhoA. To analyze the roles of Rho family proteins in cardiomyocyte orientation, adenoviral vectors expressing dominant-negative (dn) RhoA and Rac1 were generated. The transfection with adenovirus vector expressing dnRac1, but not dnRhoA, inhibited stretch-induced cell alignment. In conclusion, Rac1 activity is necessary for cardiomyocyte alignment in response to directional stretch.  相似文献   

10.
Invasion of epithelial cells is a major virulence determinant of Candida albicans ; however, the molecular events that occur during invasion are not discerned. This study is aimed to elucidate the role of the host's actin remodeling and involvement of small GTPases during invasion. Actin filaments formed a rigid ring-like structure in the rabbit corneal epithelial cell line SIRC after C. albicans invasion. During invasion, an increase in the mRNA content of Cdc42, Rac1 and RhoA GTPase was observed in SIRC cells. Immunochemical staining and expression of chimeric green fluorescent protein (GFP)-GTPases showed that all three GTPases colocalize at invasion and actin polymerization sites. This colocalization was not seen in SIRC cells expressing a GFP-tagged dominant-negative mutant of GTPases. Inhibition of invasion was observed in SIRC cells expressing dominant-negative mutants of Rac1 and RhoA GTPases. Involvement of zonula occludens-1 (ZO-1) was observed in the process of actin-mediated endocytosis of C. albicans . Actin, GTPases and ZO-1 were colocalized in epithelial cells during uptake of polymethylmethacrylate beads coated with spent medium from a C. albicans culture. The results indicate that host actin remodeling and recruitment of small GTPases occur during invasion and molecules that are shed or secreted by C. albicans are probably responsible for cytoskeletal reorganization.  相似文献   

11.
As previously shown, constitutive activation of the small GTPase Rho and its downstream target Rho-kinase is crucial for spontaneous migration of Walker carcinosarcoma cells. We now show that after treatment of cells with either the Rho inhibitor C3 exoenzyme or the Rho-kinase inhibitor Y-27632, constitutive myosin light chain (MLC) phosphorylation is significantly decreased, correlating with inhibition of cell polarization and migration. Transfection with a dominant-negative Rho-kinase mutant similarly inhibits cell polarization and MLC phosphorylation. Transfection with a dominant-active Rho-kinase mutant leads to significantly increased MLC phosphorylation, membrane blebbing, and inhibition of cell polarization. This Rho-kinase-induced membrane blebbing can be inhibited by Y-27632, ML-7, and blebbistatin. Unexpectedly, overactivation of RhoA has similar effects as its inhibition. Introduction of a bacterially expressed constitutively activated mutant protein (but not of wild-type RhoA) into the cells or transfection of cells with a constitutively active RhoA mutant both inhibit polarization and decrease MLC phosphorylation. Transfection of cells with constitutively active or dominant-negative Rac both abrogate polarity, and the latter inhibits MLC phosphorylation. Our findings suggest an important role of Rac, Rho/Rho-kinase, and MLCK in controlling myosin activity in Walker carcinosarcoma cells and show that an appropriate level of RhoA, Rac, and Rho-kinase activity is required to regulate cell polarity and migration.  相似文献   

12.
p21-activated kinase (PAK) has been shown to be an upstream mediator of JNK in angiotensin II (AngII) signaling. Little is known regarding other signaling molecules involved in activation of PAK and JNK by AngII. Rho family GTPases Rac and Cdc42 have been shown to enhance PAK activity by binding to p21-binding domain of PAK (PAK-PBD). In vascular smooth muscle cells (VSMC) AngII stimulated Rac1 binding to GST-PAK-PBD fusion protein. Pretreatment of VSMC by genistein inhibited AngII-induced Rac1 activation, whereas Src inhibitor PP1 had no effect. Inhibition of protein kinase C by phorbol 12,13-dibutyrate pretreatment also decreased AngII-mediated activation of Rac1. The adaptor molecule Nck has been shown previously to mediate PAK activation by facilitating translocation of PAK to the plasma membrane. In VSMC AngII stimulated translocation of Nck and PAK to the membrane fraction. Overexpression of dominant-negative Nck in Chinese hamster ovary (CHO) cells, stably expressing the AngII type I receptor (CHO-AT1), inhibited both PAK and JNK activation by AngII, whereas it did not affect ERK1/2. Finally, dominant-negative Nck inhibited AngII-induced DNA synthesis in CHO-AT1 cells. Our data provide evidence for Rac1 and Nck as upstream mediators of PAK and JNK in AngII signaling and implicate JNK in AngII-induced growth responses.  相似文献   

13.
The activity of the Na(+)/H(+) exchanger NHE3 isoform, which is found primarily in epithelial cells, is sensitive to the state of actin polymerization. Actin assembly, in turn, is controlled by members of the small GTPase Rho family, namely Rac1, Cdc42, and RhoA. We therefore investigated the possible role of these GTPases in modulating NHE3 activity. Cells stably expressing NHE3 were transiently transfected with inhibitory forms of Rac1, Cdc42, or RhoA and transport activity was assessed using microfluorimetry. NHE3 activity was not adversely affected by either dominant-negative Rac1 or Cdc42. By contrast, the inhibitory form of RhoA greatly depressed NHE3 activity, without noticeably altering its subcellular distribution. NHE3 activity was equally reduced by inhibiting p160 Rho-associated kinase I (ROK), a downstream effector of RhoA, with the selective antagonist Y-27632 and a dominant-negative form of ROK. Furthermore, inhibition of ROK reduced the phosphorylation of myosin light chain. A comparable net dephosphorylation was achieved by the myosin light chain kinase inhibitor ML9, which similarly inhibited NHE3. These data suggest that optimal NHE3 activity requires a functional RhoA-ROK signaling pathway which acts, at least partly, by controlling the phosphorylation of myosin light chain and, ultimately, the organization of the actin cytoskeleton.  相似文献   

14.
Rho-like GTPases orchestrate distinct cytoskeletal changes in response to receptor stimulation. Invasion of T-lymphoma cells into a fibroblast monolayer is induced by Tiam1, an activator of the Rho-like GTPase Rac, and by constitutively active V12Rac1. Here we show that activated V12Cdc42 can also induce invasion of T-lymphoma cells. Activated RhoA potentiates invasion, but fails by itself to mimic Rac and Cdc42. However, invasion is inhibited by the Rho-inactivating C3 transferase. Thus, RhoA is required but not sufficient for invasion. Invasion of T-lymphoma cells is critically dependent on the presence of serum. Serum can be replaced by the serum-borne lipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) (10(-7)-10(-6) M), which act on distinct G protein-linked receptors to activate RhoA and phospholipase C (PLC)-Ca2+ signaling. LPA- and S1P-induced invasion is preceded by Rho-dependent F-actin redistribution and pseudopodia formation. However, expression of both V14RhoA and V12Rac1 does not bypass the LPA/S1P requirement for invasion, indicating involvement of an additional signaling pathway independent of RhoA. The PLC inhibitor U-73122, but not the inactive analog U-73343, abolishes invasion. Our results indicate that T-lymphoma invasion is driven by Tiam1/Rac or Cdc42 activation, and is dependent on LPA/S1P receptor-mediated RhoA and PLC signaling pathways which lead to pseudopod formation and enhanced infiltration.  相似文献   

15.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

16.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

17.
Adhesion to brain microvascular endothelial cells, which constitute the blood-brain barrier is considered important in Escherichia coli K1 bacterial penetration into the central nervous system. Type 1 fimbriae are known to mediate bacterial interactions with human brain microvascular endothelial cells (HBMEC). Here, we demonstrate that type 1 fimbriae, specifically FimH adhesin is not only an adhesive organelle that provides bacteria with a foothold on brain endothelial cells but also triggers signalling events that promote E. coli K1 invasion in HBMEC. This is shown by our demonstrations that exogenous FimH increases cytosolic-free-calcium levels as well as activates RhoA. Using purified recombinant mannose-recognition domain of FimH, we identified a glycosylphosphatidylinositol-anchored receptor, CD48, as a putative HBMEC receptor for FimH. Furthermore, E. coli K1 binding to and invasion of HBMEC were blocked by CD48 antibody. Taken together, these findings indicate that FimH induces host cell signalling cascades that are involved in E. coli K1 invasion of HBMEC and CD48 is a putative HBMEC receptor for FimH.  相似文献   

18.
19.
Statins are widely used cholesterol-lowering drugs that may reduce the incidence of stroke and the progression of Alzheimer’s disease (AD). However, how statins exert these beneficial effects remains poorly understood. Thus, this study evaluated the roles of Rac1 geranylgeranylation and the relationship between Rac1 and αN-catenin in the protective activity of atorvastatin (ATV) in a cortical neuronal culture model of glutamate (GLU) excitotoxicity. We found that ATV-induced neuroprotection and plasticity were blocked by isoprenoids, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), inhibition of farnesylation (FTI-277) and geranylgeranylation (GGTI-286), down-regulation of GGTase-Iβ and Rac activity and promotion of active RhoA. Additionally, ATV rescued the distribution of dendritic αN-catenin and increased the number and length of dendritic branches; these effects were reversed by GGTI-286, GGTase-Iβ shRNA, Rac1 shRNA and a dominant-negative version of Rac1 (T17N). In summary, our findings suggest that ATV requires GGTase-Iβ, prenylation and active Rac1 to induce protection and plasticity. In this regard, αN-catenin is a marker for stable interactions between adhesion proteins and the actin cytoskeleton and is necessary for the neuroprotective action of ATV.  相似文献   

20.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Previous studies have demonstrated that Cryptococcus binding and invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for transmigration across the blood-brain barrier. However, the molecular mechanism involved in the cryptococcal blood-brain barrier traversal is poorly understood. In this study we examined the signaling events in HBMEC during interaction with C. neoformans. Analysis with inhibitors revealed that cryptococcal association, invasion, and transmigration require host actin cytoskeleton rearrangement. Rho pulldown assays revealed that Cryptococcus induces activation of three members of RhoGTPases, e.g. RhoA, Rac1, and Cdc42, and their activations are required for cryptococcal transmigration across the HBMEC monolayer. Western blot analysis showed that Cryptococcus also induces phosphorylation of focal adhesion kinase (FAK), ezrin, and protein kinase C α (PKCα), all of which are involved in the rearrangement of host actin cytoskeleton. Down-regulation of FAK, ezrin, or PKCα by shRNA knockdown, dominant-negative transfection, or inhibitors significantly reduces cryptococcal ability to traverse the HBMEC monolayer, indicating their positive role in cryptococcal transmigration. In addition, activation of RhoGTPases is the upstream event for phosphorylation of FAK, ezrin, and PKCα during C. neoformans-HBMEC interaction. Taken together, our findings demonstrate that C. neoformans activates RhoGTPases and subsequently FAK, ezrin, and PKCα to promote their traversal across the HBMEC monolayer, which is the critical step for cryptococcal brain infection and development of meningitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号