首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of translocation of the hydrophobic ion dipicrylamine across planar lipid membranes formed from dipalmitoyllecithin in n-decane was determined by voltage jump relaxation experiments. The activation energy of the rate constant shows a change from a positive to a negative value at about 42°C near the main phase transition temperature of this lipid. Below this temperature, the rate constant was found to increase with decreasing temperature. This anomalous behaviour extends over a temperature range of at least 10 K and may be formally interpreted as an enhanced mobility of dipicrylamine in the solid state of the membrane.  相似文献   

2.
The frequency dependence of ultrasonic velocity as well as absorption in a suspension of sonicated dipalmitoylphosphatidylcholine vesicles was measured by a differential ultrasonic resonator. The frequency was scanned between 1.3 and 13 MHz and the temperature was varied from 25 to 47°C. A pronounced relaxation was observed in the time range of 10 ns. The data were analyzed assuming a single relaxation which appeared to be a good approximation. The relaxation time as well as relaxation strength increased anomalously in the vicinity of the gel-to-liquid crystal transition of 41.5°C. This result represents the first definite evidence of the critical slowing down in the lipid bilayer and is discussed in terms of the Landau theory of phase transition. The possible biological significance of the mechanical relaxation is also presented.  相似文献   

3.
A pressure-induced decrease of the lateral diffusion in pure and cholesterol containing phosphatidylcholine bilayer membranes has been determined by the excimer formation technique using pyrene as probe molecule. The experimental results at pressures up to 150 bars are described satisfactorily by the free volume theory of a molecular transport in liquids. A pressure increase of extrapolated 575 bars decreases the lateral diffusion of lipids by a factor of two in pure dipalmitoylphosphatidylcholine membranes. Higher pressures are necessary to induce the same effect in cholesterol containing membranes. This result is interpreted by the condensing effect of cholesterol in fluid bilayer membranes.  相似文献   

4.
In contrast to the widely used method of electroporation, the method of soft perforation of lipid bilayers is proposed. It is based on the structural rearrangement of the lipid bilayer formed from disaturated phospholipids at the temperature of the phase transition from the liquid crystalline state to the gel state. This allows us to obtain a lipid pore population without the use of a strong electric field. It is shown that the planar lipid bilayer membrane (pBLM) formed from dipalmitoylphosphatidylcholine in 1 M LiCl aqueous solution exhibits the appearance of up to 50 lipid pores per 1 mm2 of membrane surface, with an average single pore conductivity of 31±13 nS. The estimation of a single pore radius carried out with water-soluble poly(ethylene glycol)s (PEGs) showed that the average pore radius ranged between 1.0–1.7 nm. It was found experimentally that PEG-1450, PEG-2000, and PEG-3350 should be in a position to block the single pore conductivity completely, while PEG-6000 fully restored the ionic conductivity. The similarity of these PEG effects to ionic conductivity in protein pores makes it possible to suggest that the partition of the PEG molecules between the pore and the bulk solution does not depend on the nature of the chemical groups located in the pore wall.  相似文献   

5.
A new method of membrane reconstitution was developed by fusion of channel protein containing vesicles with planar bilayer membranes. The fusion process only occurred below and near the phase transition temperature of the lipid used. We obtained the following results: 1. Our system is solvent-free and vesicles do not come into contact with the air/water interface. This obviates a possible denaturation of hydrophobic proteins. 2. Channel forming proteins and protein complexes, respectively, are active in a frozen lipid matrix. 3. We detected an unknown channel in cilia fragments. 4. Purified acetylcholine receptors form fluctuating channels in a membrane consisting of a pure synthetic lecithin (two component system).  相似文献   

6.
Photon correlation spectroscopy has been applied to study phase transitions of planar bilayer membranes. The membrane tension and one specific membrane viscosity are probed. Difficulties arising in the measurement of the temperature dependence of these properties are discussed and a servo-control system to overcome them is described. Typical data are presented for monoglyceride bilayers. Membranes incorporating cholesterol display effects below the lipid transition temperature which are interpreted in terms of separation within the membrane into cholesterol-rich fluid regions and regions of lipid in the gel phase. Some of the chlesterol-rich regions are apparently of macroscopic extent.  相似文献   

7.
8.
The increase in passive permeability of bilayer membranes near the phase transition temperature is usually explained as caused by either the increase in the amount of ‘boundary lipid’ present in the membrane, or by the increase in lateral compressibility of the membrane. Since both the amount of ‘boundary lipid’ and the lateral compressibility show a similar anomaly near the transition temperature, it is difficult to distinguish experimentally between the two proposed mechanisms.We have examined some details of both of the proposed pictures. The fluid-solid boundary energy, neglected in previous work, has been computed as a function of the domain size. For a single component uncharged lipid bilayer, the results rule out the existence of even loosely defined solid domains in a fluid phase, or vice versa. Thermodynamic fluctuations, which are responsible for anomalous behaviour near the phase transition temperature, are not intense enough to approximate the formation of a domain of the opposite phase.Turning next to lateral compressibility of bilayer membranes we have considered two-component mixtures in the phase separation region. We present the first calculation of lateral compressibility for such systems. The behaviour shows interesting anomalies, which should correlate with existing and future data on transport across membranes.  相似文献   

9.
The appearance of ion channels was induced in phospholipid bilayers by acidification of the bulk solution on one side of the bilayer. by addition of HCl. acetic acid or by hydrolytic production of protons using purified acetylcholinesierase. Further acidification below an apparent critical pH range led to restoration of a low conductance state similar to that seen at neutral pH. Such experiments were performed with a heterogeneous soybean lecithin extract, with homogeneous synthetic di-phytanoylphosphatidylcholine, and with a mixture of cholesterol and synthetic dioleoylphosphatdylcholine. It is proposed that the physical mechanism for this phenomenon involves fluctuations of lipid order induced by fluctuations in protnation of phospholipid head groups within a critical pH range; these, in turn, create conductive defect in the two-dimensional lattice of the lipid bilayer.  相似文献   

10.
The effect of temperature on native microsomal membrane vesicles isolated from Tetrahymena is investigated by wide angle X-ray diffraction. A 4.2 Å reflection, typical for lipids in the crystalline state, can be recorded in the temperature range between 0°C and 35°C. Quantitative evaluation of this reflection reveals a broad thermotropic ‘two-stage’ liquid crystallinecrystalline lipid phase separation with a ‘breakpoint’ at approx. 18°C. This ‘breakpoint’ coincides with the emergence of lipid-protein segregations in endomembranes of intact Tetrahymena cells as previously visualized by freeze-etch electron microscopy.  相似文献   

11.
As ascertained by freeze-fracture electron microscopy, imipramine prevents lateral phase separation from taking place in inner mitochondrial membranes at sub-zero temperatures. Electron spin resonance (ESR) measurements performed on mitochondrial membranes labeled with the N-oxyl-4′,4′-dimethyloxazolidine derivative of 16-ketostearic acid, show that the spin probe motion is markedly inhibited below 0°C and that 5 mM imipramine attenuates the temperature effect. These results are explained by supposing that imipramine is able to decrease the transition temperature of the inner mitochondrial membrane lipids as it does for simple lipid systems.  相似文献   

12.
Membranes made from binary mixtures of egg sphingomyelin (ESM) and cholesterol were investigated using conventional and saturation-recovery EPR observations of the 5-doxylstearic acid spin label (5-SASL). The effects of cholesterol on membrane order and the oxygen transport parameter (bimolecular collision rate of molecular oxygen with the nitroxide spin label) were monitored at the depth of the fifth carbon in fluid- and gel-phase ESM membranes. The saturation-recovery EPR discrimination by oxygen transport (DOT) method allowed the discrimination of the liquid-ordered (l o), liquid-disordered (l d), and solid-ordered (s o) phases because the bimolecular collision rates of the molecular oxygen with the nitroxide spin label differ in these phases. Additionally, oxygen collision rates (the oxygen transport parameter) were obtained in coexisting phases without the need for their separation, which provides information about the internal dynamics of each phase. The addition of cholesterol causes a dramatic decrease in the oxygen transport parameter around the nitroxide moiety of 5-SASL in the l o phase, which at 50 mol% cholesterol becomes ∼5 times smaller than in the pure ESM membrane in the l d phase, and ∼2 times smaller than in the pure ESM membrane in the s o phase. The overall change in the oxygen transport parameter is as large as ∼20-fold. Conventional EPR spectra show that 5-SASL is maximally immobilized at the phase boundary between regions with coexisting l d and l o phases or s o and l o phases and the region with a single l o phase. The obtained results all owed for the construction of a phase diagram for the ESM-cholesterol membrane.  相似文献   

13.
Incubations of rat liver inner mitochondrial membranes with liposomes prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol resulted in a considerable enrichment of the cholesterol composition of these membranes. This enrichment is not accompanied by an alteration in the membrane phospholipid content or fatty acid composition. The exogenous cholesterol appears to be integrated into the membrane structure because it has effects consistent with the known properties of this sterol in other natural and artificial membrane systems.Differential scanning calorimetry on both intact membranes and extracted lipids showed that as the ratio of cholesterol to phospholipid was increased, the endotherm corresponding to the lipid phase transition was reduced. Freeze-fracture electron microscopy of the native membranes showed that intramembranous particles are randomly distributed above the phase transition temperature. Below this temperature large smooth areas, believed to correspond to lipid in the gel state from which proteins have been excluded, can be observed. In the presence of high concentrations of cholesterol the fracture faces observed below the lipid transition temperature show no regions of phase segregation, an observation consistent with previous studies using pure lipids where cholesterol was observed to prevent the lipid undergoing a cooperative phase transition.The results are discussed in terms of the observed low concentrations of cholesteorl in normal liver inner mitochondrial membranes and the distribution of cholesterol within the liver cells.  相似文献   

14.
The lateral lipid distribution within dipalmitoylphosphatidylethanolamine (DPPE)/dipalmitoylphosphatidylserine (DPPS) vesicle membranes was investigated under the influence of Ca2+ using a lipid cross-linking method. To characterize the phase transition in DPPE/DPPS vesicles and to correlate the different phase states of the membrane lipids with the obtained lipid distribution ESR measurements using a fatty acid spin label were carried out. It is shown that Ca2+ has a significant influence on the lateral lipid distribution within the fluid phase of the membrane lipids; instead of a slight alternating lipid arrangement in absence of Ca2+ due to the electrostatic interaction between the DPPS headgroups after addition of Ca2+ a lateral cluster structure is characteristic of the fluid phase.  相似文献   

15.
A new acoustical method for the investigation of lipid phase transition is introduced based on the measurement of the thermal acoustic radiation (TAR) inherent in lipids. The TAR of multilamellar vesicles from dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) was measured in the megahertz range and the variations in the radiation intensity during the lipid phase transition were recorded. Two types of variations are possible: if the temperature of the vesicles decreases (in the process of transition from the liquid crystalline state to the gel state) then the TAR intensity increases, and if the temperature increases (in the reverse transition) then the TAR intensity decreases. These effects are connected with an increase in the ultrasonic absorption in the vesicles under lipid phase transition. Basing on the results of the TAR investigation, a new theoretical estimate has been developed of the variation in the absorption coefficient during the lipid phase transition. In this estimate, the variation is equated to the ratio of the phase transition entropy to the gas constant.  相似文献   

16.
Amphidinol 3 (AM3), a polyhydroxy-polyene metabolite from the dinoflagellate Amphidinium klebsii, possesses potent antifungal activity. AM3 is known to interact directly with membrane sterols and permeabilize membranes by forming pores. Because AM3 binds to sterols such as cholesterol and ergosterol, it can be assumed that AM3 has some impact on lipid rafts, which are membrane domains rich in sphingolipids and cholesterol. Hence, we first examined the effect of AM3 on phase-separated liposomes, in which raft-like ordered and non-raft-like disordered domains are segregated. Consequently, AM3 disrupted the phase separation at 22 μM, as in the case of methyl-β-cyclodextrin, a well-known raft-disrupter that extracts sterol from membranes. The surface plasmon resonance measurements and dye leakage assays show that AM3 preferentially recognizes cholesterol in the disordered membrane, which may reflect a weaker lipid-cholesterol interaction in disordered membrane than in ordered membrane. Finally, to gain insight into the AM3-induced coalescence of membrane phases, we measured membrane fluidity using fluorescence correlation spectroscopy, demonstrating that AM3 significantly increases the order of disordered phase. Together, AM3 preferentially binds to the disordered phase rather than the ordered phase, and enhances the order of the disordered phase, consequently blending the separated phases.  相似文献   

17.
The investigation is concerned with the irreversible electrical breakdown of bimolecular lipid membranes, depending on the velocity of linear voltage scanning. It was found that the membrane breakdown potential depended on the velocity of electric field variation. For instance, at voltage scanning velocities of up to 0.1 V/s, the rupture of membrane from glycerol monooleate occurs at 0.20–0.25 V and, at velocities higher than 1 V/s, at 0.5–0.6 V. Then the film breakdown depending on lipid phase transition was studied. At high velocities of imposed voltage scanning, the disruption of the bimolecular lipid membranes was shown not to depend on their phase states; at the same time, at low velocities, one could note a slight difference in the stability of the films at temperatures higher and lower than those of the phase transition. Whereas transition from gel to liquid-crystalline state involves transition from an ordered to a less ordered membrane structure with a sharp increase in the number of defects in the membrane, the authors, conclude that the film breakdown in the second case occurs by the ‘defect’ mechanism suggested earlier. It was also assumed that, in certain cases involving low velocities of voltage scanning, membrane breakdown may occur because of variation in the interfacial tension and in the contact angle between the film and torus. Possible mechanisms of the membrane irreversible electrical breakdown at high velocities of voltage variation are discussed. It was shown that breakdown should occur as a result of membrane compression in an electric field by a mechanism previously examined. The elastic moduli of a number of membranes were calculated by the breakdown criterion suggested earlier. They were found to coincide with the results of other investigators and, depending on the type of lipid, to equal 105–106 Pa.  相似文献   

18.
Interactions between melittin and a variety of negatively-charged lipid bilayers have been investigated by intrinsic fluorescence, fluorescence polarization of 1,6-diphenylhexatriene and differential scanning calorimetry. (1) Intrinsic fluorescence of the single tryptophan residue of melittin shows that binding of this peptide to negatively-charged phospholipids is directly related to the surface charge density, but is unaffected by the physical state of lipids, fluid or gel, single-shell vesicles or unsonicated dispersions. (2) Changes in the thermotropic properties of negatively-charged lipids upon melittin binding allow to differentiate two groups of lipids: (i) A progressive disappearance of the transition, without any shift in temperature, is observed with monoacid C14 lipids such as dimyristoylphosphatidylglycerol and -serine (group 1). (ii) With a second group of lipids (group 2), a transition occurs even at melittin saturation, and two transitions are detected at intermediate melittin content, one corresponding to remaining unperturbed lipids, the other shifted downward by 10–20°C. This second group of lipids is constituted by monoacid C16 lipids, dipalmitoylphosphatidylglycerol and -serine. Phosphatidic acids also enter this classification, but it is the net charge of the phosphate group which allows to discriminate: singly charged phosphatidic acids belong to group 2, whereas totally ionized ones behave like group 1 lipids, whatever the chain length. (3) It is concluded that melittin induces phase separations between unperturbed lipid regions which give a transition at the same temperature as pure lipid, and peptide rich domains in which the stoichiometry is 1 toxin per 8 phospholipids. The properties of such domains depend on the bilayer stability: in the case of C16 aliphatic chains and singly charged polar heads, the lipid-peptide domains have a transition at a lower temperature than the pure lipid. With shorter C14 chains or with two net charges by polar group, the bilayer structure is probably totally disrupted, and the new resulting phase can no longer lead to a cooperative transition.  相似文献   

19.
20.
Retinol and retinoic acid have been incorporated into the artificial membrane systems, planar bimolecular lipid membranes and liposomes, and their effects on several membrane parameters have been measured. 1. Retinol and retinoic acid increased the permeability of egg lecithin liposomes to K+, I? and glucose when incorporated into the membranes at levels as low as 0.5 membrane mol%. Retinoic acid influenced permeability more than did retinol for each of the solutes tested. 2. Retinol and retinoic acid both decreased the electrical resistance of egg lecithin-planar bimolecular lipid membranes from 0.5 to 8 membrane mol%. Retinoic acid effected a larger change than did retinol. 3. Retinol and retinoic acid increased the permeability of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes to water at 1.0 and 3.0 membrane mol%. A larger effect on water permeability was measured for retinoic acid than for retinol. 4. Retinol and retinoic acid at 1.0 and 3.0 membrane mol% were shown to lower the phase-transition temperature of liposomes composed of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. Phase-transition temperatures were monitored by abrupt changes in water permeability and liposome size associated with the transition. Retinoic acid lowered the phase-transition temperature of dimyristoylphosphatidylcholine liposomes more than did retinol, while both retinoids had almost the same effect on dipalmitoylphosphatidylcholine liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号