首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine synthase [O-acetyl-L-serine(thiol)lyase] catalyzes the final step for L-cysteine biosynthesis in plants. The tolerance of transgenic tobacco plants over-expressing cysteine synthase cDNA in cytosol (3F), chloroplasts (4F) and in both organelles (F1) was investigated towards heavy metals such as Cd, Se, Ni, Pb and Cu. The transgenic plants were significantly more tolerant than wild-type plants in agar medium containing Cd, Se and Ni. The F1 transgenic plants had a higher resistance than other transgenic lines towards these metals and could enhance accumulation of Cd in shoot. These results suggest that the transgenic plants over-expressing cysteine synthase both in cytosol and chloroplasts can be applicable to phyto-remediation of Cd from contaminated soils.  相似文献   

2.
Cysteine (Cys) synthase [O-acetyl-L-Ser(thiol)-lyase, EC 4.2.99.8; CSase] is responsible for the final step in biosynthesis of Cys. Transgenic tobacco (Nicotiana tabacum; F(1)) plants with enhanced CSase activities in the cytosol and in the chloroplasts were generated by cross-fertilization of two transformants expressing cytosolic CSase or chloroplastic CSase. The F(1) transgenic plants were highly tolerant to toxic sulfur dioxide and sulfite. Upon fumigation with 0.1 microL L(-1) sulfur dioxide, the Cys and glutathione contents in leaves of F(1) plants were increased significantly, but not in leaves of non-transformed control plants. Furthermore, the leaves of F(1) plants exhibited the increased resistance to paraquat, a herbicide generating active oxygen species.  相似文献   

3.
Noji M  Saito K 《Amino acids》2002,22(3):231-243
Summary. Serine acetyltransferase (SATase) and cysteine synthase (O-acetylserine (thiol)-lyase) (CSase) are committed in the final step of cysteine biosynthesis. Six cDNA clones encoding SATase have been isolated from several plants, e.g. watermelon, spinach, Chinese chive and Arabidopsis thaliana. Feedback-inhibition pattern and subcellular localization of plant SATases were evaluated. Two types of SATase that differ in their sensitivity to the feedback inhibition by l-cysteine were found in plants. In Arabidopsis, cytosolic SATase was inhibited by l-cysteine at a physiological concentration in an allosteric manner, but the plastidic and mitochondrial forms were not subjected to this feedback regulation. These results suggest that the regulation of cysteine biosynthesis through feedback inhibition may differ depending on the subcellular compartment. The allosteric domain responsible for l-cysteine inhibition was characterized, using several SATase mutants. The single change of amino acid residue, glycine-277 to cysteine, in the C-terminal region of watermelon SATase caused a significant decrease of the feedback-inhibition sensitivity of watermelon SATase. We made the transgenic Arabidopsis overexpressing point-mutated watermelon SATase gene whose product was not inhibited by l-cysteine. The contents of OAS, cysteine, and glutathione in transgenic Arabidopsis were significantly increased as compared to the wild-type Arabidopsis. Transgenic tobacco (Nicotiana tabacum) (F1) plants with enhanced CSase activities both in the cytosol and in the chloroplasts were generated by cross-fertilization of two transgenic tobacco expressing either cytosolic CSase or chloroplastic CSase. Upon fumigation with 0.1 μL L−1 sulfur dioxide, both the cysteine and glutathione contents in leaves of F1 plants were increased significantly, but not in leaves of non-transformed control plants. These results indicated that both SATase and CSase play important roles in cysteine biosynthesis and its regulation in plants. Received November 27, 2001 Accepted December 21, 2001  相似文献   

4.
5.
A gene encoding an O-acetyl-L-serine sulfhydrylase (cysK) was cloned from Lactobacillus casei FAM18110 and expressed in Escherichia coli. The purified recombinant enzyme synthesized cysteine from sulfide and O-acetyl-L-serine at pH 5.5 and pH 7.4. At pH 7.4, the apparent K(M) for O-acetyl-L-serine (OAS) and sulfide were 0.6 and 6.7 mM, respectively. Furthermore, the enzyme showed cysteine desulfurization activity in the presence of dithiothreitol at pH 7.5, but not at pH 5.5. The apparent K(M) for L-cysteine was 0.7 mM. The synthesis of cystathionine from homocysteine and serine or OAS was not observed. When expressed in a cysMK mutant of Escherichia coli, the cloned gene complemented the cysteine auxotrophy of the mutant. These findings suggested that the gene product is mainly involved in cysteine biosynthesis in L. casei. Quantitative real-time PCR and a mass spectrometric assay based on selected reaction monitoring demonstrated that L. casei FAM18110 is constitutively overexpressing cysK.  相似文献   

6.
We have isolated cDNA clones encoding cysteine synthase (CSase, EC 4.2.99.8), which catalyzes the terminal step in cysteine biosynthesis, by direct genetic complementation of a Cys? mutation in Escherichia coli with an expression library of Citrullus vulgaris (watermelon) cDNA. The library was constructed from 8-day-old etiolated seedlings of C. vulgaris in the λZAPII vector, converted to a plasmid library by in vivo excision, and then used for transformation of cysteine auxotroph E. coli NK3, which lacks the cysK and cysM loci. The complementing cDNA containing a 560 by 5′-untranslated region encodes a polypeptide of 325 amino acids of Mr 34342. The translational product reacted with an antibody raised against CSase A of Spinacia oleracea. CSase and β-pyrazolealanine synthase activities were demonstrated in vitro in extracts from E. coli cells expressing the cDNA. Genomic DNA blot analysis indicated the presence of a single copy of the gene, designated cysA, in the C. vulgaris genome. RNA blot hybridization indicated constitutive expression of cysA in cotyledons, hypocotyls and radicles of green and etiolated seedlings. These data suggested that this cDNA clone encodes CSase A the homolog of which in spinach is localized in the cytoplasm. The molecular phylogenetic tree of the amino acid sequences of CSaes from plants and bacteria suggested that there are three families in the CSase superfamily; the plant CSase A family, the plant CSase B family and the bacterial CSase family. The proteins in the plant CSase A family are the most conserved relative to the ancestral CSase protein.  相似文献   

7.
Protoporphyrin IX is the last common intermediate of tetrapyrrole biosynthesis. The chelation of a Mg2+ ion by magnesium chelatase and of a ferrous ion by ferrochelatase directs protoporphyrin IX towards the formation of chlorophyll and heme, respectively. A full length cDNA clone encoding a ferrochelatase was identified from a Nicotiana tabacum cDNA library. The encoded protein consists of 497 amino acid residues with a molecular weight of 55.4 kDa. In vitro import of the protein into chloroplasts and its location in stroma and thylakoids confirm its close relationship to the previously described Arabidopsis thaliana plastid-located ferrochelatase (FeChII). A 1700-bp tobacco FeCh cDNA sequence was expressed in Nicotiana tabacum cv. Samsun NN under the control of the CaMV 35S promoter in antisense orientation allowing investigation into the consequences of selective reduction of the plastidic ferrochelatase activity for protoporphyrin IX channeling in chloroplasts and for interactions between plastidic and mitochondrial heme synthesis. Leaves of several transformants showed a reduced chlorophyll content and, during development, a light intensity-dependent formation of necrotic leaf lesions. In comparison with wild-type plants the total ferrochelatase activity was decreased in transgenic lines leading to an accumulation of photosensitizing protoporphyrin IX. Ferrochelatase activity was reduced only in plastids but not in mitochondria of transgenic plants. By means of the specifically diminished ferrochelatase activity consequences of the selective inhibition of protoheme formation for the intracellular supply of heme can be investigated in the future.  相似文献   

8.
9.
10.
11.
C. Brunold  M. Suter 《Planta》1982,155(4):321-327
Intact chloroplasts isolated from spinach leaves by a combination of differential and Percoll density gradient centrifugation and free of mitochondrial and peroxisomal contamination contained about 35% of the total leaf serine acetyltransferase (EC 2.3.1.30) activity. No appreciable activity of the enzyme could be detected in the gradient fractions containing broken chloroplasts, mitochondria, and peroxisomes. L-cysteine added to the incubation mixture at 1 mM almost completely inhibited serine acetyltransferase activity, both of leaf and chloroplast extracts. D-cysteine was much less inhibitory. L-cystine up to 5 mM and O-acetyl-L-serine up to 10 mM had no effect on the enzyme activity. When measured at pH 8.4, the enzyme extracted from the leaves had a K m for L-serine of 2.4, the enzyme from the chloroplasts a K m of 2.8 mM.Abbreviations NAS N-acetyl-L-serine - NADP-GPD NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - OAS O-acetyl-L-serine - OASSase O-acetyl-L-serine sulfhydrylase - 3-PGA D-3-phosphoglycerate - SATase serine acetyltransferase  相似文献   

12.
Cysteine synthesis is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) in the cytosol, plastids, and mitochondria of plants. Biochemical analyses of recombinant plant SAT and OAS-TL indicate that the reversible association of the proteins in the cysteine synthase complex (CSC) controls cellular sulfur homeostasis. However, the relevance of CSC formation in each compartment for flux control of cysteine synthesis remains controversial. Here, we demonstrate the interaction between mitochondrial SAT3 and OAS-TL C in planta by FRET and establish the role of the mitochondrial CSC in the regulation of cysteine synthesis. NMR spectroscopy of isolated mitochondria from WT, serat2;2, and oastl-C plants showed the SAT-dependent export of OAS. The presence of cysteine resulted in reduced OAS export in mitochondria of oastl-C mutants but not in WT mitochondria. This is in agreement with the stronger in vitro feedback inhibition of free SAT by cysteine compared with CSC-bound SAT and explains the high OAS export rate of WT mitochondria in the presence of cysteine. The predominant role of mitochondrial OAS synthesis was validated in planta by feeding [(3)H]serine to the WT and loss-of-function mutants for OAS-TLs in the cytosol, plastids, and mitochondria. On the basis of these results, we propose a new model in which the mitochondrial CSC acts as a sensor that regulates the level of SAT activity in response to sulfur supply and cysteine demand.  相似文献   

13.
Transgenic maize (Zea mays L.) and tobacco (Nicotiana tabacum Petit Havana SR1) plants have been generated, which overproduce a mitochondrial Nicotiana plumbaginifolia manganese superoxide dismutase (MnSOD) in chloroplasts. For this, the mature MnSOD-coding sequence was fused to a chloroplast transit peptide from a Pisum sativum ribulose-1,5-bisphosphate carboxylase (Rubisco) gene and expression of the chimeric gene was driven by the cauliflower mosaic virus (CaMV) 35S promoter. The transgenic MnSOD gene product was correctly targeted to the chloroplasts both in maize and tobacco. However, despite the use of the CaMV 35S promoter, the MnSOD was predominantly localized in the chloroplasts of the bundle sheath cells of maize. Furthermore, the transit peptide was cleaved off at a different position in maize and tobacco.  相似文献   

14.
15.
不同启动子驱动下转基因盐藻外源基因的稳定表达   总被引:5,自引:2,他引:5  
摘要:为了探讨外源性与内源性启动子对转基因盐藻外源基因表达的影响,将含外源性启动子CMV35S的表达载体CMV35S-bar(G12)和含内源双拷贝碳酸酐酶启动子DCA1的表达载体DCA1-bar(D-B)分别转化盐藻,筛选稳定转化株后,观察在不同启动子驱动下外源基因的表达情况及对转基因盐藻生长的影响。 通过电击法分别将表达载体G12 和D-B转化盐藻,经PPT筛选后,各得到了3株PPT抗性藻株,经PCR及测序分析证实外源基因bar已经整合到盐藻的基因组中,半定量RT-PCR结果显示,在内源性启动子DCA1驱动下,bar基因的表达强度明显高于在外源性启动子驱动下bar的表达,并且D-B转化株的bar基因表达在盐诱导下其表达明显提高,而G12转化株中bar基因的表达对盐诱导无反应。Southern blot 分析显示,外源基因的拷贝数与不同启动子间无相关性。转化株的生长特性分析显示,D-B转化株的生长速度明显高于G12转化株。本研究的结果指出,内源诱导型启动子在驱动转基因盐藻外源基因的高效稳定表达中比外源组成型启动子更具有优势。  相似文献   

16.
Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. ABBREVIATIONS: PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.  相似文献   

17.
We have isolated cDNA clones encoding cysteine synthase (CSase, EC 4.2.99.8), which catalyzes the terminal step in cysteine biosynthesis, by direct genetic complementation of a Cys mutation in Escherichia coli with an expression library of Citrullus vulgaris (watermelon) cDNA. The library was constructed from 8-day-old etiolated seedlings of C. vulgaris in the ZAPII vector, converted to a plasmid library by in vivo excision, and then used for transformation of cysteine auxotroph E. coli NK3, which lacks the cysK and cysM loci. The complementing cDNA containing a 560 by 5-untranslated region encodes a polypeptide of 325 amino acids of Mr 34342. The translational product reacted with an antibody raised against CSase A of Spinacia oleracea. CSase and -pyrazolealanine synthase activities were demonstrated in vitro in extracts from E. coli cells expressing the cDNA. Genomic DNA blot analysis indicated the presence of a single copy of the gene, designated cysA, in the C. vulgaris genome. RNA blot hybridization indicated constitutive expression of cysA in cotyledons, hypocotyls and radicles of green and etiolated seedlings. These data suggested that this cDNA clone encodes CSase A the homolog of which in spinach is localized in the cytoplasm. The molecular phylogenetic tree of the amino acid sequences of CSaes from plants and bacteria suggested that there are three families in the CSase superfamily; the plant CSase A family, the plant CSase B family and the bacterial CSase family. The proteins in the plant CSase A family are the most conserved relative to the ancestral CSase protein.  相似文献   

18.
Kiwifruit was transformed with a soybean β-1,3-endoglucanase (EC 3.2.1.39) cDNA under the control of the cauliflower mosaic virus (CaMV) 35S RNA promoter. The introduced gene was expressed in young leaves of the transformants. Assays of protein extracts from young leaves showed an increase in enzyme activity in many transformants, the transformant with the highest level of enzyme activity having an about sixfold increase over the control plants. When leaves from control and three transformants were inoculated with Botrytis cinerea, which causes gray mold disease, the disease lesion areas for two transformants were smaller than on control plants. Received: 5 March 1998 / Revision received: 19 October 1998 / Accepted: 27 October 1998  相似文献   

19.
Summary Cysteme synthase, the key enzyme for fixation of inorganic sulfide, catalyses the formation of cysteine from O-acetylserine and inorganic sulfide. Here we report the cloning of cDNAs encoding cysteine synthase isoforms fromArabidopsis thaliana. The isolated cDNA clones encode for a mitochondrial and a plastidic isoform of cysteine synthase (O-acetylserine (thiol)-lyase, EC 4.2.99.8), designated cysteine synthase C (AtCS-C, CSase C) and B (AtCS-B; CSase B), respectively.AtCS-C andAtCS-B, having lengths of 1569-bp and 1421-bp, respectively, encode polypeptides of 430 amino acids (45.8 kD) and of 392 amino acids ( 41.8 kD), respectively. The deduced amino acid sequences of the mitochondrial and plastidic isoforms exhibit high homology even with respect to the presequences. The predicted presequence of AtCS-C has a N-terminal extension of 33 amino acids when compared to the plastidic isoform. Northern blot analysis showed thatAtCS-C is higher expressed in roots than in leaves whereas the expression ofAtCS-B is stronger in leaves. Furthermore, gene expression of both genes was enhanced by sulfur limitation which in turn led to an increase in enzyme activity in crude extracts of plants. Expression of theAtCS-B gene is regulated by light. The mitochondrial, plastidic and cytosolic (Hesse and Altmann, 1995) isoforms of cysteine synthase ofArabidopsis are able to complement a cysteine synthasedeficient mutant ofEscherichia coli unable to grow on minimal medium without cysteine, indicating synthesis of functional plant proteins in the bacterium. Two lines of evidence proved thatAtCS-C encodes a mitochondrial form of cysteine synthase; first, import ofin vitro translation products derived from AtCS-C in isolated intact mitochondria and second, Western blot analysis of mitochondria isolated from transgenic tobacco plants expressing AtCS-C cDNA/c-myc DNA fusion protein.Abbreviations CSase cysteine synthase The nucleotide sequence data reported will appear in the EMBL Database under the accession numbers X81973 forAtCS-C and X81698 forAtCS-B.  相似文献   

20.
A tobacco microsomal P-3 fatty acid desaturase gene (NtFAD3) under the control of the CaMV 35S promoter or an improved CaMV 35S promoter (El2Q) was introduced into sweet potato. Transformed sweet potato plants were obtained from embryogenic calli following Agrobacterium tumefaciens-mediated transformation. The transgenic plants grew normally to form storage roots and showed properties similar to those of the non-transgenic plants. The fatty acid composition in the transgenic line with a NtFAD3 gene driven by the CaMV 35S promoter was similar to that in the non-transformant. However, in the transgenic line that had a NtFAD3 gene driven by the El2Q promoter, linoleic acid (18:2) and linolenic acid (18:3) contents were 47.7 mol% and 24.8 mol%, respectively, which were significantly different from the 53.6 mol% and 11.3 mol%, respectively, in the non-transformant. The NtFAD3 gene driven by the El2Q promoter was expressed more strongly than that driven by the CaMV 35S promoter, thereby increasing the linolenic acid content in the transgenic sweet potato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号