首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND: The mechanism of the teratogenicity of vigabatrin (VGB) is unknown. The objectives of this study were to determine the placental transfer of VGB and to evaluate the effect of VGB on maternal, placental, and fetal concentrations of amino acids. METHODS: A single dose of 400 mg/kg VGB in physiological saline was administered intraperitoneally to a group of Theiler outbred (TO) mice on gestational day (GD) 10. The controls received a proportionate volume of saline. Maternal blood samples, embryos, and placentas were collected at 3.5, 6.0, and 9.0 hr after treatment and their total amino acid concentrations determined in an ion-exchange amino acid analyzer. RESULTS: At 3.5 hr, there was a decrease in concentrations of some amino acids in the blood, placenta, and embryos of VGB-treated mice, but the decrease in methionine was most marked. gamma-aminobutyric acid (GABA) was significantly higher in the VGB group in both the embryos and the placentas at 3.5 hr but at 6.0 and 9.0 hr the differences were not significant. Vigabatrin levels were higher in the placenta than in the embryo at 3.5 hr, but at 6.0 hr there was an overlap of the VGB peak with that of tryptophan with very much lower levels than at 3.5 hr. At 9.0 hr, there was no vigabatrin peak in either the placenta or the embryo. CONCLUSIONS: Maternal exposure to VGB results in peak levels of the drug after 3.5 hr in the placenta and embryo. Methionine concentration is most severely affected in VGB-treated mothers, placentas, and fetuses. We speculate that this deficiency could be a possible mechanism for the teratogenic effects of vigabatrin.  相似文献   

3.
Placental dysfunction underlies many complications during pregnancy, and better understanding of gene function during placentation could have considerable clinical relevance. However, the lack of a facile method for placenta-specific gene manipulation has hampered investigation of placental organogenesis and the treatment of placental dysfunction. We showed previously that transduction of fertilized mouse eggs with lentiviral vectors leads to transgene expression in both the fetus and the placenta. Here we report placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts after removal of the zona pellucida. All of the placentas analyzed, but none of the fetuses, were transgenic. Application of this method substantially rescued mice deficient in Ets2, Mapk14 (also known as p38alpha) and Mapk1 (also known as Erk2) from embryonic lethality caused by placental defects. Ectopic expression of Mapk11 also complemented Mapk14 deficiency during placentation.  相似文献   

4.
There is no knowledge of the transport mechanisms by which solutes cross the cat placenta or any other endotheliochorial placenta. Here, we investigated whether the amino acid transport systems beta and A are present in the cat placenta using a placental fragment uptake technique. Data were compared with studies in the human placenta, in which the presence of these two transport systems has been well established. A time course of [(3)H]taurine (substrate for system beta) and [(14)C]MeAIB (nonmetabolizable substrate for system A) uptake was determined in the term cat and human placental fragments in the presence and absence (choline substituted) of Na(+), and further studies were carried out over 15 min. Taurine uptake into both cat and human placenta fragments was found to be Na(+) and Cl(-) dependent, and Na(+)-dependent taurine uptake was blocked by excess beta-alanine. MeAIB uptake was found to be Na(+) dependent, and Na(+)-dependent MeAIB uptake was blocked by excess MeAIB or glycine. Western blotting and immunohistochemistry performed on cat and human placenta showed expression of TAUT and ATA2 (SNAT2), proteins associated with system beta and system A activity, respectively. This study therefore provides the first evidence of the presence of amino acid transport systems beta and A in the cat placenta.  相似文献   

5.

Background  

TATA-box-binding protein 2 (TBP2/TRF3) is a vertebrate-specific paralog of TBP that shares with TBP a highly conserved carboxy-terminal domain and the ability to bind the TATA box. TBP2 is highly expressed in oocytes whereas TBP is more abundant in embryos.  相似文献   

6.
Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved.  相似文献   

7.
8.
Amyloid fibrils of patients treated with regular haemodialysis essentially consists of beta2-microglobulin (beta2-m) and its truncated species DeltaN6beta2-m lacking six residues at the amino terminus. The truncated fragment shows a higher propensity to self-aggregate and constitutes an excellent candidate for the analysis of a protein in the amyloidogenic conformation. The surface topology and the conformational analysis of native beta2-m and the truncated DeltaN6beta2-m species both in the soluble and in the fibrillar forms were investigated by the limited proteolysis/mass spectrometry strategy. The conformation in solution of a further truncated mutant DeltaN3beta2-m lacking three residues at the N-terminus was also examined. This approach appeared particularly suited to investigate the regions that are solvent-exposed, or flexible enough to be accessible to protein-protein interactions and to describe the conformation of transient intermediates. Moreover, proteolysis experiments can also be tailored to investigate amyloid fibrils by discriminating the protein regions constituting the unaccessible core of the fibrils and those still flexible and exposed to the solvent. Although native beta2-m and DeltaN3beta2-m shared essentially the same conformation, significative structural differences exist between the native and the DeltaN6beta2-m proteins in solution with major differences located at the end moiety of strand V and subsequent loop with strand VI and at both the N- and C-termini of the proteins. On the contrary, an identical distribution of preferential proteolytic sites was observed in both proteins in the fibrillar state, which was nearly superimposible to that observed for the soluble form of DeltaN6beta2-m. These data revealed that synthetic fibrils essentially consists of an unaccessible core comprising residues 20-87 of the beta2-m protein with exposed and flexible N- and C-terminal ends. Moreover, proteolytic cleavages observed in vitro at Lys 6 and Lys 19 reproduce specific cleavages that have to take place in vivo to generate the truncated forms of beta2-m occurring in natural fibrils. On the basis of these results, a molecular mechanism for fibril formation has been proposed.  相似文献   

9.
Fatty acid metabolism and oxidation capacity in the placenta, which likely affects the rate and composition of lipid delivered to the fetus remains poorly understood. Long chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are critical for fetal growth and brain development. We determined the impact of maternal obesity on placental fatty acid oxidation, esterification and transport capacity by measuring PhosphatidylCholine (PC) and LysoPhosphatidylCholine (LPC) containing DHA by mass spectrometry in mother-placenta-baby triads as well as placental free carnitine and acylcarnitine metabolites in women with normal and obese pre-pregnancy BMI. Placental protein expression of enzymes involved in beta-oxidation and esterification pathways, MFSD2a (lysophosphatidylcholine transporter) and OCTN2 (carnitine transporter) expression in syncytiotrophoblast microvillous (MVM) and basal (BM) membranes were determined by Western Blot. Maternal obesity was associated with decreased umbilical cord plasma DHA in LPC and PC fractions in male, but not female, fetuses. Basal membrane MFSD2a protein expression was increased in placenta of males of obese mothers. In female placentas, despite an increased MVM OCTN2 expression, maternal obesity was associated with a reduced MUFA-carnitine levels and increased esterification enzymes. We speculate that lower DHA-PL in fetal circulation of male offspring of obese mothers, despite a significant increase in transporter expression for LPC-DHA, may lead to low DHA needed for brain development contributing to neurological consequences that are more prevalent in male children. Female placentas likely have reduced beta-oxidation capacity and appear to store FA through greater placental esterification, suggesting impaired placenta function and lipid transfer in female placentas of obese mothers.  相似文献   

10.
Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved.  相似文献   

11.
The half-lives of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) have been studied in fetuses and placentas from 18-day-pregnant rats. While the turnover of fetal and placental SAMDC were slightly different (t1/2 = 38 and 75 min, respectively) the half-lives of fetal and placental ODC differed markedly. T1/2 of fetal ODC was 15 min, similar to other mammalian ODCs, but placental ODC showed a relatively high half-life, about 160 min. According to that, placental ODC was more resistant than the fetal enzyme to in vivo hyperthermic treatment (40 degrees C, 1 h). Our results suggest that the degradative mechanisms for ODC in rat placenta could be regulated differently to those in other mammalian tissues.  相似文献   

12.
Correlative evidence suggests that maternal production of the mononuclear phagocyte growth factor colony stimulating factor-1 (CSF-1) regulates placental development. In order to study the role of CSF-1 in pregnancy the fertility of CSF-1-less osteopetrotic (op/op) mutant mice was investigated. Homozygous mutant crosses (op/op x op/op) were consistently infertile. As expected, op/op males were almost completely fertile when crossed with heterozygous females. Surprisingly, op/op females when mated to heterozygote males were fertile, although at a rate that was 46% of the rate for +/op females x op/op males. These data suggest that CSF-1 is required for pregnancy. However, a maternal CSF-1 source is not absolutely necessary in that pregnancies involving +/op fathers were partially rescued, suggesting that +/op fetuses and/or +/op seminal fluid provides CSF-1 or CSF-1-induced factors which compensate for the absence of maternally produced CSF-1. Despite the complete absence of CSF-1 in the uterus and placenta of op/op mice placental weights were normal, suggesting that proliferation of decidual cells and trophoblasts, both of which express the CSF-1 receptor, may not be solely regulated by CSF-1. Histochemical staining for F4/80 antigen was used to identify macrophages in the uterus and placenta. Uterine macrophages could not be detected in virgin op/op mice although they were abundant in +/op uteri. Interestingly, macrophages could be detected in op/op uteri as uncharacteristically rounded cells in early gestation, however, they were not maintained and no macrophages were apparent beyond Day 14 of pregnancy in op/op mice. Further studies in the osteopetrotic mouse will be useful in delineating those functions required for pregnancy that are regulated by CSF-1.  相似文献   

13.
Reductions in fetal plasma concentrations of certain amino acids and reduced amino acid transport in vesicle studies suggest impaired placental amino acid transport in human fetal growth restriction (FGR). In the present study, we tested the hypothesis of an impairment in amino acid transport in the ovine model of hyperthermia-induced FGR by determining transplacental and placental retention and total placental clearance of a branched-chain amino acid (BCAA) analog, the nonmetabolizable neutral amino acid aminocyclopentane-1-carboxylic acid (ACP), in singleton control (C) and FGR pregnancies at 135 days gestation age (dGA; term 147 dGA). At study, based on the severity of the placental dysfunction, FGR fetuses were allocated to severe (sFGR, n = 6) and moderate FGR (mFGR, n = 4) groups. Fetal (C, 3,801.91 +/- 156.83; mFGR, 2,911.33 +/- 181.35; sFGR, 1,795.99 +/- 238.85 g; P < 0.05) and placental weights (C, 414.38 +/- 38.35; mFGR, 306.23 +/- 32.41; sFGR, 165.64 +/- 28.25 g; P < 0.05) were reduced. Transplacental and total placental clearances of ACP per 100 g placenta were significantly reduced in the sFGR but not in the mFGR group, whereas placental retention clearances were unaltered. These data indicate that both entry of ACP into the placenta and movement from the placenta into fetal circulation are impaired in severe ovine FGR and support the hypothesis of impaired placental BCAA transport in severe human FGR.  相似文献   

14.
We have previously demonstrated that human placental fibroblasts produce a pregnancy-specific beta 1-glycoprotein (PS beta G) immunologically indistinguishable from placental PS beta G. This was confirmed by the immunocytochemical localization of PS beta G in these fibroblasts. In addition, placental fibroblasts contain all three PS beta G mRNAs of 2.3, 2.2, and 1.7 kilobases which hybridize with the three PS beta G cDNAs (PSG16, PSG93, and PSG95) identified, although at 1.4-2.5% of the levels in human term placenta. The major PS beta G species synthesized by placental fibroblasts is a 62K glycopolypeptide formed from a 58K intracellular precursor polypeptide. However, the PS beta G species found in human placenta are one major glycoprotein of 72K and two minor ones of 64K and 54K. Poly(A)+ RNA from placental fibroblasts directed the synthesis of two polypeptides of 48K and 46K (major), whereas, poly(A)+ RNA from human placenta directed the synthesis of higher levels of four polypeptides of 50 K, 48 K (major), 46 K, and 36 K. Thus, the major PS beta G species found in fibroblasts and human placenta differ. The carbohydrate side-chains are essential for the stability of fibroblast PS beta G, because PS beta G synthesis in these fibroblasts could not be detected in the presence of tunicamycin, a protein glycosylation inhibitor which did not affect PS beta G mRNA expression. Our finding that a variant PS beta G species is produced in placental fibroblasts raises the possibility that the authentic placental PS beta G species may have different functions.  相似文献   

15.
Pregnancy-specific beta 1-glycoprotein (PS beta G) isolated from human placenta consists of a set of at least three glycoproteins with apparent molecular masses of 72, 64, and 54 kDa, respectively. This heterogeneity is confirmed by the detection of three nonglycosylated polypeptides of 50, 48, and 36 kDa, which can be immunoprecipitated by antiserum to placental PS beta G obtained by in vitro translation of placental poly(A)+ RNA. To examine the structural relationships between these proteins, two cDNA clones of 1912 base pairs (PSG16) and 2131 base pairs (PSG93) encoding human PS beta Gs were isolated from a human placental lambda gt11 cDNA library. The sequenced portions of these two cDNAs are identical with the exception that clone PSG93 contains an additional 86 base pairs at the end of the common 3'-coding region. This insertion could result in the generation of a PS beta G species of 419 amino acid residues instead of the 417 amino acid residues predicted by the sequence of clone PSG16. The calculated molecular masses of the two polypeptides encoded by PSG16 and PSG93 are 46.9 and 47.2 kDa, close to the size of the major nonglycosylated PS beta G of 48 kDa. The identity of proteins coded for by these cDNA clones was confirmed by comparing the predicted amino acid sequences to sequences determined from endoproteinase Lys-C peptides obtained from human placental PS beta G. Two placental PS beta G mRNAs of 2200 bases (major) and 1700 bases (minor) have been detected by Northern hybridization analysis. Primer extension and S1 nuclease mapping experiments demonstrated that PS beta G mRNAs have heterogeneous 5' termini.  相似文献   

16.
We utilized a vitamin D receptor (VDR) gene knockout model to study the effects of maternal and fetal absence of VDR on maternal fertility, fetal-placental calcium transfer, and fetal mineral homoeostasis. Vdr null mice were profoundly hypocalcemic, conceived infrequently, and had significantly fewer viable fetuses in utero that were also of lower body weight. Supplementation of a calcium-enriched diet increased the rate of conception in Vdr nulls but did not normalize the number or weight of viable fetuses. Among offspring of heterozygous (Vdr(+/-)) mothers (wild type, Vdr(+/-), and Vdr null fetuses), there was no alteration in serum Ca, P, or Mg, parathyroid hormone, placental (45)Ca transfer, Ca and Mg content of the fetal skeleton, and morphology and gene expression in the fetal growth plates. Vdr null fetuses did have threefold increased 1,25-dihydroxyvitamin D levels accompanied by increased 1alpha-hydroxylase mRNA in kidney but not placenta; a small increase was also noted in placental expression of parathyroid hormone-related protein (PTHrP). Among offspring of Vdr null mothers, Vdr(+/-) and Vdr null fetuses had normal ionized calcium levels and a skeletal ash weight that was appropriate to the lower body weight. Thus our findings indicate that VDR is not required by fetal mice to regulate placental calcium transfer, circulating mineral levels, and skeletal mineralization. Absence of maternal VDR has global effects on fetal growth that were partly dependent on maternal calcium intake, but absence of maternal VDR did not specifically affect fetal mineral homeostasis.  相似文献   

17.
18.
Estrogen related receptor beta (ERR-beta) is an orphan nuclear receptor specifically expressed in a subset of extra-embryonic ectoderm of post-implantation embryos. ERR-beta is essential for placental development since the ERR-beta null mutants die at 10.5dpc due to the placenta abnormality. Here, we show that the ERR-beta is specifically expressed in primordial germ cells (PGC), obviously another important cell type for reproduction. Expression of the ERR-beta mRNA in embryonic germ cells started at E11.5 as soon as PGC reached genital ridges, and persisted until E15-E16 in both sexes. Immunostaining with anti-ERR-beta antibody revealed that the ERR-beta protein is exclusively expressed in germ cells in both male and female gonads from E11.5 to E16. 5. To study function of the ERR-beta in PGC, we complemented placental defects of the ERR-beta null mutants with wild-type tetraploid embryos, and analyzed germ cell development in the rescued embryos. It was found that development of gonad and PGC was not apparently affected, but number of germ cells was significantly reduced in male and female gonads, suggesting that the ERR-beta appears to be involved in proliferation of gonadal germ cells. The rescued embryos could develop to term and grow up to adulthood. The rescued ERR-beta null male were found to be fertile, but both male and female null mutants exhibited behavioural abnormalities, implying that the ERR-beta plays important roles in wider biological processes than previously thought.  相似文献   

19.
Fetuses from gilts with estrogen receptor (ESR) genotype AA (AA-AA and AA-AB) and BB (BB-AB and BB-BB) were compared at Day 35/36 of pregnancy, to examine whether fetal ESR genotype nested within maternal ESR genotype would affect fetal traits. Furthermore the relation of fetal body weight and fetal heart weight to various placental traits were evaluated relative to ESR genotype. Fetal and placental weight and length, and implantation surface area were not affected by fetal ESR genotype nested within maternal ESR genotype. Fetal weight was related similarly to placental length, placental weight, and implantation surface area: up to a certain threshold value (40 cm, 40 g and 250 cm2, respectively), an increase in the trait was associated with an increase of fetal weight. Thereafter, fetal weight did not change anymore. Thus, at Day 35/36 of pregnancy porcine fetuses seem to have a maximum growth potential. The percentage of AA-AA fetuses that had not reached this maximum growth potential was larger than of the other three genotype combinations studied, and therefore a higher subsequent fetal mortality may be expected in this group. Hearts of AA-AB fetuses were significantly heavier than those of BB-AB and BB-BB fetuses and tended to be heavier than those of AA-AA fetuses. The reason for this hypertrophy is unclear, but might be related to a difference in placental vascularity. Heart weight of fetuses from BB gilts increased with fetal weight, while heart weights of fetuses from AA gilts did not. Heart weight increased with an increase of placental length and implantation surface area up to 51 cm and 437 cm2, respectively, and thereafter decreased again. For BB-AB fetuses a similar relation was found between heart weight and placental weight, while heart weight of the other three genotype combinations remained unaffected as placental weight increased. The fetus and placenta are continuously changing during early pregnancy, therefore different mechanisms may change the demands for cardiac output. However, keeping in mind that placental size and blood volume are relatively large, placental vascularity and vascular development may play a major role. Therefore, further research on heart size, placental size and vascularity, relative to ESR genotype, is recommended.  相似文献   

20.
TLP (TBP-like protein), which is a new protein dis-covered by us, has a structure similar to that of the C-terminal conserved domain (CCD) of TBP, although its function has not yet been elucidated. We isolated cDNA and genomic DNA that encode chicken TLP (cTLP) and determined their structures. The predicted amino acid sequence of cTLP was 98 and 91% identical to that of its mammalian and Xenopus counterparts, respectively, and its translation product was ubiquitously observed in chicken tissues. FISH detection showed that chicken tlp and tbp genes were mapped at 3q2.6-2.8 and 3q2.4-2.6 of the same chromosome, respectively. Genome analysis revealed that the chicken tlp gene was spliced with five introns. Interestingly, the vertebrate tbp genes were also found to be split by five introns when we focused on the CCDs, and their splicing points were similar to those of tlp. On the contrary, another TBP-resembling gene of Drosophila, trf1, is split by only one intron, as is the Drosophila 's tbp gene. These results support our earlier assumption that vertebrate TLPs did not directly descend from Drosophila TRF1. On the basis of these results together with phylogenetical exam-ination, we speculate that tlp diverged from an ancestral tbp gene through a process of gene duplication and point mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号