首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.  相似文献   

2.
Mitochondria are the specialized organelles for energy metabolism but also participate in the production of O(2) active species, cell cycle regulation, apoptosis and thermogenesis. Classically, regulation of mitochondrial energy functions was based on the ADP/ATP ratio, which dynamically stimulates the transition between resting and maximal O(2) uptake. However, in the last years, NO was identified as a physiologic regulator of electron transfer and ATP synthesis by inhibiting cytochrome oxidase. Additionally, NO stimulates the mitochondrial production of O(2) active species, primarily O(2)(-) and H(2)O(2), and, depending on NO matrix concentration, of ONOO(-), which is responsible for the nitrosylation and nitration of mitochondrial components. By this means, alteration in mitochondrial complexes restricts energy output, further increases O(2) active species and changes cell signaling for proliferation and apoptosis through redox effects on specific pathways. These mechanisms are prototypically operating in prevalent generalized diseases like sepsis with multiorgan failure or limited neurodegenerative disorders like Parkinson's disease. Complex I appears to be highly susceptible to ONOO(-) effects and nitration, which defines an acquired group of mitochondrial disorders, in addition to the genetically induced syndromes. Increase of mitochondrial NO may follow over-expression of nNOS, induction and translocation of iNOS, and activation and/or increased content of the newly described mtNOS. Likewise, mtNOS is important in the modulation of O(2) uptake and cell signaling, and in mitochondrial pathology, including the effects of aging, dystrophin deficiency, hypoxia, inflammation and cancer.  相似文献   

3.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

4.
Airway epithelial cells are constantly exposed to environmental insults such as air pollution or tobacco smoke that may contain high levels of reactive nitrogen and reactive oxygen species. Previous work from our laboratory demonstrated that the reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)), specifically activates neutral sphingomyelinase 2 (nSMase2) to generate ceramide and induce apoptosis in airway epithelial cells. In the current study we examine the biological consequence of exposure of human airway epithelial (HAE) cells to reactive nitrogen species (RNS). Similar to ROS, we hypothesized that RNS may modulate ceramide levels in HAE cells and induce apoptosis. We found that nitric oxide (NO) exposure via the NO donor papa-NONOate, failed to induce apoptosis in HAE cells. However, when papa-NONOate was combined with a superoxide anion donor (DMNQ) to generate peroxynitrite (ONOO(-)), apoptosis was observed. Similarly pure ONOO(-)-induced apoptosis, and ONOO(-)-induced apoptosis was associated with an increase in cellular ceramide levels. Pretreatment with the antioxidant glutathione did not prevent ONOO(-)-induced apoptosis, but did prevent H(2)O(2)-induced apoptosis. Analysis of the ceramide generating enzymes revealed a differential response by the oxidants. We confirmed our findings that H(2)O(2) specifically activated a neutral sphingomyelinase (nSMase2). However, ONOO(-) exposure did not affect neutral sphingomyelinase activity; rather, ONOO(-) specifically activated an acidic sphingomyelinase (aSMase). The specificity of each enzyme was confirmed using siRNA to knockdown both nSMase2 and aSMase. Silencing nSMase2 prevented H(2)O(2)-induced apoptosis, but had no effect on ONOO(-)-induced apoptosis. On the other hand, silencing of aSMase markedly impaired ONOO(-)-induced apoptosis, but did not affect H(2)O(2)-induced apoptosis. These findings support our hypothesis that ROS and RNS modulate ceramide levels to induce apoptosis in HAE cells. However, we found that different oxidants modulate different enzymes of the ceramide generating machinery to induce apoptosis in airway epithelial cells. These findings add to the complexity of how oxidative stress promotes lung cell injury.  相似文献   

5.
Excess superoxide (O(2)(-)) and nitric oxide (NO) forms peroxynitrite (ONOO(-)) during cardiac ischemia reperfusion (IR) injury, which in turn induces protein tyrosine nitration (tyr-N). Mitochondria are both a source of and target for ONOO(-). Our aim was to identify specific mitochondrial proteins that display enhanced tyr-N after cardiac IR injury, and to explore whether inhibiting O(2)(-)/ONOO(-) during IR decreases mitochondrial protein tyr-N and consequently improves cardiac function. We show here that IR increased tyr-N of 35 and 15kDa mitochondrial proteins using Western blot analysis with 3-nitrotyrosine antibody. Immunoprecipitation (IP) followed by LC-MS/MS identified 13 protein candidates for tyr-N. IP and Western blot identified and confirmed that the 35kDa tyr-N protein is the voltage-dependent anion channel (VDAC). Tyr-N of native cardiac VDAC with IR was verified on recombinant (r) VDAC with exogenous ONOO(-). We also found that ONOO(-) directly enhanced rVDAC channel activity, and rVDAC tyr-N induced by ONOO(-) formed oligomers. Resveratrol (RES), a scavenger of O(2)(-)/ONOO(-), reduced the tyr-N levels of both native and recombinant VDAC, while L-NAME, which inhibits NO generation, only reduced tyr-N levels of native VDAC. O(2)(-) and ONOO(-) levels were reduced in perfused hearts during IR by RES and L-NAME and this was accompanied by improved cardiac function. These results identify tyr-N of VDAC and show that reducing ONOO(-) during cardiac IR injury can attenuate tyr-N of VDAC and improve cardiac function.  相似文献   

6.
Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway.  相似文献   

7.
Isolated copper/zinc superoxide dismutase (Cu/Zn-SOD) or manganese superoxide dismutase (Mn-SOD) together with hydrogen peroxide (H(2)O(2)) caused rapid breakdown of nitric oxide (NO) and production of peroxynitrite (ONOO(-)) indicated by the oxidation of dihydrorhodamine-1,2,3 (DHR) to rhodamine-1,2,3. The breakdown of NO by this reaction was inhibited by cyanide (CN(-)) or by diethyldithiocarbamate (DETC), both Cu/Zn-SOD inhibitors, and the conversion of DHR to rhodamine-1,2,3 was inhibited by incubating Cu/Zn-SOD with either CN(-) or with high levels of H(2)O(2) or by including urate, a potent scavenger of ONOO(-). In the presence of phenol, the reaction of SOD, H(2)O(2) and NO caused nitration of phenol, which is known to be a footprint of ONOO(-) formation. H(2)O(2) addition to macrophages (cell line J774) expressing the inducible form of NO synthase (i-NOS) caused rapid breakdown of the NO they produced and this was also inhibited by CN(-) and by DETC. Subsequent ONOO(-) production by the macrophages, via this reaction, was inhibited by CN(-), high levels of H(2)O(2) or by urate. H(2)O(2) addition to i-NOS macrophages also caused cell death which was, in part, prevented by DETC or urate. We also found inhibition of mitochondrial respiration with malate and pyruvate as substrates, when isolated liver mitochondria were incubated with Cu/Zn-SOD, H(2)O(2) and NO. Inhibition of mitochondrial respiration was partly prevented by urate. The production of ONOO(-) by SOD may be of significant importance pathologically under conditions of elevated H(2)O(2) and NO levels, and might contribute to cell death in inflammatory and neurodegenerative diseases, as well as in macrophage-mediated host defence.  相似文献   

8.
Cytochrome c nitration by peroxynitrite   总被引:1,自引:0,他引:1  
Peroxynitrite (ONOO(-)), the product of superoxide (O(2)) and nitric oxide (.NO) reaction, inhibits mitochondrial respiration and can stimulate apoptosis. Cytochrome c, a mediator of these two aspects of mitochondrial function, thus represents an important potential target of ONOO(-) during conditions involving accelerated rates of oxygen radical and.NO generation. Horse heart cytochrome c(3+) was nitrated by ONOO(-), as indicated by spectral changes, Western blot analysis, and mass spectrometry. A dose-dependent loss of cytochrome c(3+) 695 nm absorption occurred, inferring that nitration of a critical heme-vicinal tyrosine (Tyr-67) promoted a conformational change, displacing the Met-80 heme ligand. Nitration was confirmed by cross-reactivity with a specific antibody against 3-nitrotyrosine and by increased molecular mass compatible with the addition of a nitro-(-NO(2)) group. Mass analysis of tryptic digests indicated the preferential nitration of Tyr-67 among the four conserved tyrosine residues in cytochrome c. Cytochrome c(3+) was more extensively nitrated than cytochrome c(2+) because of the preferential oxidation of the reduced heme by ONOO(-). Similar protein nitration patterns were obtained by ONOO(-) reaction in the presence of carbon dioxide, whereupon secondary nitrating species arise from the decomposition of the nitroso-peroxocarboxylate (ONOOCO(2)(-)) intermediate. Peroxynitrite-nitrated cytochrome c displayed significant changes in redox properties, including (a) increased peroxidatic activity, (b) resistance to reduction by ascorbate, and (c) impaired support of state 4-dependent respiration in intact rat heart mitochondria. These results indicate that cytochrome c nitration may represent both oxidative and signaling events occurring during .NO- and ONOO(-)-mediated cell injury.  相似文献   

9.
Nitric oxide (NO(*)) signaling is diverse, and involves reaction with free radicals, metalloproteins, and specific protein amino acid residues. Prominent among these interactions are the heme protein soluble guanylate cyclase and cysteine residues within several proteins such as caspases, the executors of apoptosis. Another well characterized site of NO(*) binding is the terminal complex of the mitochondrial respiratory chain, cytochrome c oxidase, although the downstream signaling effects of this interaction remain unclear. Recently, it has been recognized that the intracellular formation of hydrogen peroxide (H(2)O(2)) by controlled mechanisms contributes to what we term "redox tone," and so controls the activity and activation thresholds of redox-sensitive signaling pathways. In this hypothesis paper, it is proposed that NO(*)-dependent modulation of the respiratory chain can control the mitochondrial generation of H(2)O(2) for cell signaling purposes without affecting ATP synthesis.  相似文献   

10.
Peroxynitrite (ONOO(-)/ONOOH) is generally expected to be formed in vivo from the diffusion-controlled reaction between superoxide (O(2)) and nitric oxide ((*)NO). In the present paper we show that under aerobic conditions the nitroxyl anion (NO(-)), released from Angeli's salt (disodium diazen-1-ium-1,2,2-triolate, (-)ON=NO(2)(-)), generated peroxynitrite with a yield of about 65%. Simultaneously, hydroxyl radicals are formed from the nitroxyl anion with a yield of about 3% via a minor, peroxynitrite-independent pathway. Further experiments clearly underline that the chemistry of NO(-) in the presence of oxygen is mainly characterized by peroxynitrite and not by HO( small middle dot) radicals. Quantum-chemical calculations predict that peroxynitrite formation should proceed via intermediary formation of (*)NO and O(2), probably by an electron-transfer mechanism. This prediction is supported by the fact that H(2)O(2) is formed during the decay of NO(-) in the presence of superoxide dismutase (Cu(II),Zn-SOD). Since the nitroxyl anion may be released endogenously by a variety of biomolecules, substantial amounts of peroxynitrite might be formed in vivo via NO(-) in addition to the "classical" ( small middle dot)NO + O(2)() pathway.  相似文献   

11.
The reversible inhibitory effects of nitric oxide (.NO) on mitochondrial cytochrome oxidase and O(2) uptake are dependent on intramitochondrial.NO utilization. This study was aimed at establishing the mitochondrial pathways for.NO utilization that regulate O-(2) generation via reductive and oxidative reactions involving ubiquinol oxidation and peroxynitrite (ONOO(-)) formation. For this purpose, experimental models consisting of intact mitochondria, ubiquinone-depleted/reconstituted submitochondrial particles, and ONOO(-)-supplemented mitochondrial membranes were used. The results obtained from these experimental approaches strongly suggest the occurrence of independent pathways for.NO utilization in mitochondria, which effectively compete with the binding of.NO to cytochrome oxidase, thereby releasing this inhibition and restoring O(2) uptake. The pathways for.NO utilization are discussed in terms of the steady-state levels of.NO and O-(2) and estimated as a function of O(2) tension. These calculations indicate that mitochondrial.NO decays primarily by pathways involving ONOO(-) formation and ubiquinol oxidation and, secondarily, by reversible binding to cytochrome oxidase.  相似文献   

12.
Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.  相似文献   

13.
Park J  Lee J  Choi C 《PloS one》2011,6(8):e23211
Oxidative stresses caused by reactive oxygen species (ROS) can induce rapid depolarization of inner mitochondrial membrane potential and subsequent impairment of oxidative phosphorylation. Damaged mitochondria produce more ROS, especially the superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)), which potentiate mitochondria-driven ROS propagation, so-called ROS-induced ROS release (RIRR), via activation of an inter-mitochondria signaling network. Therefore, loss of function in only a fraction of mitochondria might eventually affect cell viability through this positive feedback loop. Since ROS are very short-lived molecules in the biological milieu, mitochondrial network dynamics, such as density, number, and spatial distribution, can affect mitochondria-driven ROS propagation. To address this issue, we developed a mathematical model using an agent-based modeling approach, and tested the effect of mitochondrial network dynamics on RIRR for mitochondria under various conditions. Simulation results show that the intracellular ROS signaling pattern, such as ROS propagation speed and oxidative stress vulnerability, are critically affected by mitochondrial network dynamics. Mitochondrial network dynamics of mitochondrial distribution, density, activity, and size can mediate inter-mitochondrial signaling under certain conditions and determine the identity of the ROS signaling pattern. We further elucidated the potential mechanism of these actions, i.e., conversion of major messenger molecules involved in ROS signaling. If the average distance between neighboring mitochondria is large or mitochondrial distribution becomes randomized, messenger molecule of the ROS signaling network can be switched from O(2)(-) to H(2)O(2). In this case, mitochondria-driven ROS propagation is efficiently blocked by introduction of excess cytosolic glutathione peroxidase 1, while introduction of cytosolic superoxide dismutase has no effect. Together, these results suggest that mitochondrial network dynamics is a major determinant for cellular responses to RIRR through changing the key messenger molecules.  相似文献   

14.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

15.
Hydrogen peroxide (H(2)O(2)) is an oxidant implicated in cell signalling and various pathologies, yet relatively little is known about its impact on endothelial cell function. Herein we studied the functional and biochemical changes in aortic vessels and cultured porcine aortic endothelial cells (PAEC) exposed to H(2)O(2). Exposure of aortic rings to 25 or 50 microM, but not 10 microM, H(2)O(2) for 60 min prior to constriction significantly decreased subsequent relaxation in response to acetylcholine (ACh), but not the nitric oxide ((.)NO) donor sodium nitroprusside. Treatment of PAEC with 50 microM H(2)O(2) significantly decreased ACh-induced accumulation of (.)NO, as measured with a (.)NO-selective electrode, yet such treatment increased nitric oxide synthase activity approximately 3-fold, as assessed by conversion of L-arginine to L-citrulline. Decreased (.)NO bioavailability was reflected in decreased cellular cGMP content, associated with increased superoxide anion radical (O(2)(-.)), and overcome by addition of polyethylene glycol superoxide dismutase. Increased cellular O(2)(-.) production was inhibited by allopurinol, diphenyliodonium and rotenone in an additive manner. The results show that exposure of endothelial cells to H(2)O(2) decreases the bioavailability of agonist-induced (.)NO as a result of increased production of O(2)(-.) likely derived from xanthine oxidase, NADPH-oxidase and mitochondria. These processes could contribute to H(2)O(2)-induced vascular dysfunction that may be relevant under conditions of oxidative stress such as inflammation.  相似文献   

16.
Hydrophobic bile acids are toxic to isolated rat hepatocytes by mechanisms involving mitochondrial dysfunction and oxidative stress. In the current study we examined the role of nitric oxide (NO), a potential mediator of apoptosis, during bile acid-induced apoptosis. Freshly isolated rat hepatocytes and hepatic mitochondria generated NO and peroxynitrite (ONOO(-)) in a concentration- and time-dependent manner when exposed to the toxic bile salt glycochenodeoxycholate (GCDC) (25-500 microm), which was prevented by the nitric-oxide synthase (NOS) inhibitors N(G)-monomethyl-N-arginine monoacetate (l-NMMA) and 1400W. Relationships between hepatocyte NO production and apoptosis were examined by comparing the effects of NOS inhibitors with other inhibitors of GCDC-induced apoptosis. Inhibitors of caspases 8 and 9, the mitochondrial permeability transition blocker cyclosporin A, and the antioxidant idebenone reduced NO generation and apoptosis in GCDC-treated hepatocytes. In contrast, NOS inhibitors had no effect on GCDC-induced apoptosis despite marked reduction of NO and ONOO(-). However, treatment with the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate [N-(-aminoethyl)N-(2-hydroxy-2-nitrohydrazino)-1,2-ethylenediamine) inhibited apoptosis and caspase 3 activity while significantly elevating NO levels above GCDC-stimulated levels. Neither NO donors nor NOS inhibitors affected GCDC-induced mitochondrial permeability transition or cytochrome c release from liver mitochondria or GCDC-induced mitochondrial depolarization from isolated hepatocytes, suggesting that NO inhibits bile acid-induced hepatocyte apoptosis by a non-mitochondrial-dependent pathway. In conclusion, whereas NO produced from GCDC-treated hepatocytes neither mediates nor protects against bile acid-induced apoptosis, higher levels of NO inhibit GCDC-induced hepatocyte apoptosis by caspase-dependent pathways.  相似文献   

17.
Hyperleptinemia accompanying obesity affects endothelial nitric oxide (NO) and is a serious factor for vascular disorders. NO, superoxide (O(2)(-)), and peroxynitrite (ONOO(-)) nanosensors were placed near the surface (5+/-2 microm) of a single human umbilical vein endothelial cell (HUVEC) exposed to leptin or aortic endothelium of obese C57BL/6J mice, and concentrations of calcium ionophore (CaI)-stimulated NO, O(2)(-), ONOO(-) were recorded. Endothelial NO synthase (eNOS) expression and L-arginine concentrations in HUVEC and aortic endothelium were measured. Leptin did not directly stimulate NO, O(2)(-), or ONOO(-) release from HUVEC. However, a 12-h exposure of HUVEC to leptin increased eNOS expression and CaI-stimulated NO (625+/-30 vs. 500+/-24 nmol/l control) and dramatically increased cytotoxic O(2)(-) and ONOO(-) levels. The [NO]-to-[ONOO(-)] ratio ([NO]/[ONOO(-)]) decreased from 2.0+/-0.1 in normal to 1.30+/-0.1 in leptin-induced dysfunctional endothelium. In obese mice, a 2.5-fold increase in leptin concentration coincided with 100% increase in eNOS and about 30% decrease in intracellular L-arginine. The increased eNOS expression and a reduced l-arginine content led to eNOS uncoupling, a reduction in bioavailable NO (250+/-10 vs. 420+/-12 nmol/l control), and an elevated concentration of O(2)(-) (240%) and ONOO(-) (70%). L-Arginine and sepiapterin supplementation reversed eNOS uncoupling and partially restored [NO]/[ONOO(-)] balance in obese mice. In obesity, leptin increases eNOS expression and decreases intracellular l-arginine, resulting in eNOS an uncoupling and depletion of endothelial NO and an increase of cytotoxic ONOO(-). Hyperleptinemia triggers an endothelial NO/ONOO(-) imbalance characteristic of dysfunctional endothelium observed in other vascular disorders, i.e., atherosclerosis and diabetes.  相似文献   

18.
Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.  相似文献   

19.
Ventilator strategies allowing for increases in carbon dioxide (CO(2)) tensions (hypercapnia) are being emphasized to ameliorate the consequences of inflammatory-mediated lung injury. Inflammatory responses lead to the generation of reactive species including superoxide (O(2)(-)), nitric oxide (.NO), and their product peroxynitrite (ONOO(-)). The reaction of CO(2) and ONOO(-) can yield the nitrosoperoxocarbonate adduct ONOOCO(2)(-), a more potent nitrating species than ONOO(-). Based on these premises, monolayers of fetal rat alveolar epithelial cells were utilized to investigate whether hypercapnia would modify pathways of.NO production and reactivity that impact pulmonary metabolism and function. Stimulated cells exposed to 15% CO(2) (hypercapnia) revealed a significant increase in.NO production and nitric oxide synthase (NOS) activity. Cell 3-nitrotyrosine content as measured by both HPLC and immunofluorescence staining also increased when exposed to these same conditions. Hypercapnia significantly enhanced cell injury as evidenced by impairment of monolayer barrier function and increased induction of apoptosis. These results were attenuated by the NOS inhibitor N-monomethyl-L-arginine. Our studies reveal that hypercapnia modifies.NO-dependent pathways to amplify cell injury. These results affirm the underlying role of.NO in tissue inflammatory reactions and reveal the impact of hypercapnia on inflammatory reactions and its potential detrimental influences.  相似文献   

20.
Nitric oxide and peroxynitrite interactions with mitochondria   总被引:8,自引:0,他引:8  
Nitric oxide (*NO) and peroxynitrite (ONOO-) avidly interact with mitochondrial components, leading to a range of biological responses spanning from the modulation of mitochondrial respiration, mitochondrial dysfunction to the signaling of apoptotic cell death. Physiological levels of *NO primarily interact with cytochrome c oxidase, leading to a competitive and reversible inhibition of mitochondrial oxygen uptake. In turn, this leads to alterations in electrochemical gradients, which affect calcium uptake and may regulate processes such as mitochondrial transition pore (MTP) opening and the release of pro-apoptotic proteins. Large or persistent levels of *NO in mitochondria promote mitochondrial oxidant formation. Peroxynitrite formed either extra- or intra-mitochondrially leads to oxidative damage, most notably at complexes I and II of the electron transport chain, ATPase, aconitase and Mn-superoxide dismutase. Mitochondrial scavenging systems for peroxynitrite and peroxynitrite-derived radicals such as carbonate (CO3*-) and nitrogen dioxide radicals (*NO2) include cytochrome c oxidase, glutathione and ubiquinol and serve to partially attenuate the reactions of these oxidants with critical mitochondrial targets. Detection of nitrated mitochondrial proteins in vivo supports the concept that mitochondria constitute central loci of the toxic effects of excess reactive nitrogen species. In this review we will provide an overview of the biochemical mechanisms by which *NO and ONOO- regulate or alter mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号