首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tricarboxylate carrier from eel liver mitochondria was purified by chromatography on hydroxyapatite and Matrix Gel Blue B and reconstituted into liposomes by removal of the detergent with Amberlite. Optimal transport activity was obtained by using a phospholipid concentration of 11.5 mg/ml, a Triton X-114/phospholipid ratio of 0.9, and ten passages through the same Amberlite column. The activity of the carrier was influenced by the phospholipid composition of the liposomes, being increased by cardiolipin and phosphatidylethanolamine and decreased by phosphatidylinositol. The reconstituted tricarboxylate carrier catalyzed a first-order reaction of citrate/citrate or citrate/malate exchange. The maximum transport rate of external [14C]citrate was 9.0 mmol/min per g of tricarboxylate carrier protein at 25°C and this value was virtually independent of the type of substrate present in the external or internal space of the liposomes. The half-saturation constant (K m) was 62 M for citrate and 541 M for malate. The activation energy of the citrate/citrate exchange reaction was 74 kJ/mol from 5 to 19°C and 31 kJ/mol from 19 to 35°C. The rate of the exchange had an external pH optimum of 8.  相似文献   

2.
The dicarboxylate carrier from rat liver mitochondria was purified by the Amberlite/hydroxyapatite procedure and reconstituted in egg yolk phospholipid vesicles by removing the detergent with Amberlite. The efficiency of reconstitution was optimized with respect to the ratio of detergent/phospholipid, the concentration of phospholipid and the number of Amberlite column passages. In the reconstituted system the incorporated dicarboxylate carrier catalyzed a first-order reaction of malate/phosphate exchange. V of the reconstituted malate/phosphate exchange was determined to be 6000 mumol/min per g protein at 25 degrees C. This value was independent of the type of substrate present at the external or internal space of the liposomes (malate, phosphate or malonate). The half-saturation constant was 0.49 mM for malate, 0.54 mM for malonate and 1.41 mM for phosphate. The activation energy of the exchange reaction was determined to be 95.8 kJ/mol. The transport was independent of the external pH in the range between pH 6 and 8.  相似文献   

3.
The tricarboxylate carrier from rat liver mitochondria was solubilized with Triton X-100 and purified by chromatography on hydroxyapatite and celite. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent Mr of 30,000. When reconstituted into liposomes, the tricarboxylate transport protein catalyzed a 1,2,3-benzenetricarboxylate-sensitive citrate/citrate exchange. We obtained a 1070-fold purification with respect to the mitochondrial extract, the recovery was 22% and the protein yield 0.02%. The properties of the reconstituted carrier, i.e., requirement for a counteranion, substrate specificity and inhibitor sensitivity, were similar to those of the tricarboxylate transport system as characterized in intact mitochondria.  相似文献   

4.
McIntosh CA  Oliver DJ 《Plant physiology》1992,100(4):2030-2034
The tricarboxylate transporter was solubilized from pea (Pisum sativum) mitochondria with Triton X-114, partially purified over a hydroxylapatite column, and reconstituted in phospholipid vesicles. The proteoliposomes exchanged external [14C]citrate for internal citrate or malate but not for preloaded d,l-isocitrate. Similarly, although external malate, succinate, and citrate competed with [14C]citrate in the exchange reaction, d,l-isocitrate and phosphoenolpyruvate did not. This tricarboxylate transporter differed from the equivalent activity from animal tissues in that it did not transport isocitrate and phosphoenolpyruvate. In addition, tricarboxylate transport in isolated plant mitochondria, as well as that measured with the partially purified and reconstituted transporter, was less active than the transporter isolated from animal tissues.  相似文献   

5.
The exchange between external [14C] citrate and internal citrate, malate or phosphoenopyruvate can be reconstituted with a Triton extract of submitochondrial particles from rat liver. The reconstituted activity is dependent on the phospholipid composition of the liposomes and is influenced by the simultaneously incorporated Triton. The kinetic properties, the substrate and tissue specificity, and the inhibitor sensitivity of citrate transport in liposomes are similar to those described for the tricarboxylate transport in mitochondria. The maximal rate of citrate exchange in the reconstituted system (13.5 μmol × min?1 × g?1 at 25°C and pH 7.5) accounts for 12% of the original mitochondrial activity.  相似文献   

6.
The tricarboxylate carrier from beef liver mitochondria was reconstituted into liposomes using a protocol based on the absorption of Triton X-100 to hydrophobic Amberlite XAD-2 beads. The activity of the reconstituted carrier was determined spectroscopically by measuring the citrate/isocitrate exchange with an enzymatic assay. The Km for citrate obtained with this method was 35 microM and the Ki of 1,2,3-benzenetricarboxylate was 27 microM.  相似文献   

7.
The carnitine carrier was purified from rat liver mitochondria and reconstituted into liposomes by removing the detergent from mixed micelles by Amberlite. Optimal transport activity was obtained with 1 microgram/ml and 12.5 mg/ml of protein and phospholipid concentration, respectively, with a Triton X-100/phospholipid ratio of 1.8 and with 16 passages through the same Amberlite column. The activity of the carrier was influenced by the phospholipid composition of the liposomes, being increased in the presence of cardiolipin and decreased in the presence of phosphatidylinositol. In the reconstituted system the incorporated carnitine carrier catalyzed a carnitine/carnitine exchange which followed a first-order reaction. The maximum transport rate of external [3H]carnitine was 1.7 mmol/min per g protein at 25 degrees C and was independent of the type of countersubstrate. The half-saturation constant (Km) for carnitine was 0.51 mM. The affinity of the carrier for acylcarnitines was in the microM range and depended on the carbon chain length. The activation energy of the carnitine/carnitine exchange was 133 kJ/mol. The carrier function was independent of the pH in the range between 6 and 8 and was inhibited at pH below 6.  相似文献   

8.
The tricarboxylate transporter has been purified in reconstitutively active form from rat liver mitochondria. The transporter was extracted from mitoplasts with Triton X-114 in the presence of cardiolipin and citrate and was then purified by sequential chromatography on hydroxylapatite, Matrex Gel Orange A, Matrex Gel Blue B, and Affi-Gel 501. Analysis of the purified material via sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of one main protein band with an apparent molecular mass of 32.5 kDa. Upon incorporation into phospholipid vesicles, the purified transporter catalyzed a 1,2,3-benzenetricarboxylate-sensitive citrate/citrate exchange with a specific transport activity of 3240 nmol/4 min/mg of protein. This value was enhanced 831-fold with respect to the starting material. Substrate competition studies indicated that the reconstituted transport could be substantially inhibited by isocitrate, malate, and phosphoenolpyruvate, but not by alpha-ketoglutarate, succinate, malonate, pyruvate, or inorganic phosphate. Moreover, in addition to 1,2,3-benzenetricarboxylate, the reconstituted exchange was sensitive to the anion transport inhibitor n-butylmalonate but was insensitive to phenylsuccinate, alpha-cyano-4-hydroxycinnamate, and carboxyatractyloside. Finally, studies with covalent modifying agents indicated the purified transporter was inhibited by sulfhydryl reagents and by diethyl pyrocarbonate, 2,3-butanedione, phenylglyoxal, and pyridoxal 5-phosphate. In conclusion, these studies describe the first procedure to yield a highly purified tricarboxylate transport protein that both displays a high specific transport activity and can be obtained in quantities that readily enable further structural as well as functional studies. Based on its substrate specificity and inhibitor sensitivity, the purified 32.5-kDa protein appears to represent the complete tricarboxylate transport system found in rat liver mitochondria. Finally, new information is presented concerning the effect of covalent modifying reagents on the function of this transporter.  相似文献   

9.
The tricarboxylate carrier of bovine liver mitochondria has been solubilized by Triton X-114 and purified by chromatography on hydroxylapatite and Silica Gel 60. The purified carrier could be visualized as a single band in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate with Mr 37,000-38,000. The carrier, after reconstitution in phospholipid vesicles, catalyzed the exchange of [14C]citrate against citrate, malate, and threo-D8-isocitrate and was inhibited by the specific tricarboxylate carrier inhibitor 1,2,3-benzenetricarboxylic acid.  相似文献   

10.
The effect of anthracycline antibiotics on the activity of the partially purified and reconstituted tricarboxylate carrier system of the rat liver mitochondria was studied. It was found that the citrate/citrate exchange activity is inhibited by Br-daunomycin and with less potency by doxorubicin, daunomycin, epirubicin and idarubicin. The inhibition of the citrate transport activity is concentration and time-dependent. Cardiolipin protects against the inhibition by Br-daunomycin and the reconstituted citrate transport activity depends upon the ratio of cardiolipin/Br-daunomycin.  相似文献   

11.
The citrate carrier from maize (Zea mays) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and hydroxyapatite/celite in the presence of cardiolipin. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 31 kD. When reconstituted into liposomes, the citrate carrier catalyzed a pyridoxal 5'-P-sensitive citrate/citrate exchange. It was purified 224-fold with a recovery of 50% and a protein yield of 0.22% with respect to the mitochondrial extract. In the reconstituted system the purified citrate carrier catalyzed a first-order reaction of citrate/citrate (0.065 min-1) or citrate/malate exchange (0.075 min-1). Among the various substrates and inhibitors tested, the reconstituted protein transported citrate, cis-aconitate, isocitrate, L-malate, succinate, malonate, glutarate, alpha-ketoglutarate, oxaloacetate, and alpha-ketoadipate and was inhibited by pyridoxal 5'-P, phenylisothiocyanate, mersalyl, and p-hydroxymercuribenzoate (but not N-ethylmaleimide), 1,2, 3-benzentricarboxylate, benzylmalonate, and butylmalonate. The activation energy of the citrate/citrate exchange was 66.5 kJ/mol between 10 degrees C and 35 degrees C; the half-saturation constant (Km) for citrate was 0.65 +/- 0.05 mM and the maximal rate (Vmax) of the citrate/citrate exchange was 13.0 +/- 1.0 micromol min-1 mg-1 protein at 25 degrees C.  相似文献   

12.
The carnitine carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite and celite and reconstituted in egg yolk phospholipid vesicles by adsorbing the detergent on polystyrene beads. In the reconstituted system, in addition to the carnitine/carnitine exchange, the purified protein catalyzed a uni-directional transport (uniport) of carnitine measured as uptake into unloaded proteoliposomes as well as efflux from prelabelled proteoliposomes. In both cases the reaction followed a first-order kinetics with a rate constant of 0.023-0.026 min-1. Besides carnitine, also acylcarnitines were transported in the uniport mode. N-Ethylmaleimide inhibited the uni-directional transport of carnitine completely. The uniport of carnitine is not influenced by the delta pH and the electric gradient across the membrane. The activation energy for uniport was 115 kJ/mol and the half-saturation constant on the external side of the proteoliposomes was 0.53 mM. The maximal rate of the uniport at 25 degrees C was 0.2 mumol/min per mg protein, i.e. about 10 times lower than that of the reconstituted carnitine transport in exchange mode.  相似文献   

13.
It has been found that amytal competitively inhibits succinate (+ rotenone) oxidation by intact uncoupled mitochondria. Similar results were obtained in metabolic state 3, the Ki value being 0.45 mM. Amytal did not effect succinate oxidation by broken mitochondria and submitochondrial particles (at a concentration which inhibited succinate oxidation by intact mitochondria). Amytal inhibited the swelling of mitochondria suspended in ammonium succinate or ammonium malate but was without effect on the swelling of mitochondria in ammonium phosphate and potassium phosphate in the presence of valinomycin+carbonylcyanide p-trifluoromethoxyphenylhydrazone.Using [14C] succinate and [14C] citrate it has been shown that amytal inhibited the succinate/succinate, succinate/Pi, succinate/malate, and citrate/citrate and citrate/malate exchanges. Amytal inhibited Pi transport across mitochondrial membrane only if preincubated with mitochondria. Other barbiturates: phenobarbital, dial, veronal were found to inhibit [14C]succinate/anion (Pi, succinate, malonate, malate) exchange reactions in a manner similar to amytal. It is concluded that barbiturates non-specifically inhibit the dicarboxylate carrier system, tricarboxylate carrier and Pi translocator. It is postulated that the inhibition of succinate oxidation by barbiturates is caused mainly by the inhibition of succinate and Pi translocation across the mitochondrial membrane.  相似文献   

14.
To gain some insight into the process by which both acetylCoA and NADPH, needed for fatty acid synthesis, are obtained, in the cytosol, from the effluxed intramitochondrial citrate, via citrate lyase and malate dehydrogenase plus malic enzyme respectively, the capability of externally added pyruvate to cause efflux of malate from rat liver mitochondria was tested. The occurrence of a pyruvate/malate translocator is here shown: pyruvate/malate exchange shows saturation features (Km and Vmax values, measured at 20 degrees C and at pH 7.20, were found to be about 0.25 mM and 2.7 nmoles/min x mg mitochondrial protein, respectively) and is inhibited by certain impermeable compounds. This carrier, together with the previously reported tricarboxylate and oxodicarboxylate translocators proved to allow for citrate and oxaloacetate efflux due to externally added pyruvate.  相似文献   

15.
The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.  相似文献   

16.
The mitochondrial dicarboxylate carrier has been substantially purified from rat liver mitoplasts by extraction with Triton X-114 in the presence of cardiolipin followed by chromatography on hydroxylapatite. Upon incorporation of the hydroxylapatite eluate into phospholipid vesicles, an n-butylmalonate-sensitive malonate/malate exchange has been demonstrated. This exchange activity is enhanced 226-fold relative to the starting material (i.e. detergent-extracted mitoplasts). Silver-stained sodium dodecyl sulfate-polyacrylamide gradient gels verify the high purity of this fraction relative to the starting material. Nonetheless, the banding pattern indicates that several protein species are still present. As isolated, the dicarboxylate transporter is rather unstable but can be stabilized either by the addition of 10% ethylene glycol and subsequent storage at -20 degrees C or by incorporation into phospholipid vesicles in the presence of malate followed by freezing in liquid nitrogen. Such proteoliposomes catalyze a [14C]malonate uptake which is characterized by a first order rate constant of 1.02 min-1 and a t 1/2 of 41 s. This uptake can be inhibited by dicarboxylates (e.g. succinate, malate, unlabeled malonate) but not by either alpha-ketoglutarate or by tricarboxylates (e.g. citrate, threo-Ds-isocitrate). Furthermore, the reconstituted malonate transport is dependent on internal malate and can be inhibited by n-butylmalonate, mersalyl, p-chloromercuribenzoate, and Pi, but not by N-ethylmaleimide. It is concluded that this highly purified fraction contains a reconstitutively active dicarboxylate transporter which, based on its substrate specificity and inhibitor sensitivity, appears to be identical to the native dicarboxylate transport system found in intact rat liver mitochondria.  相似文献   

17.
The effect of hyperthyroidism on the activity of the mitochondrial tricarboxylate carrier has been studied. The activity of this transporting system in liver mitochondria was quantitatively determined by the rate of malate-[14C]citrate exchange using the 1,2,3-benzene-tricarboxylate inhibitor stop technique. It has been found that the rate of citrate uptake is significantly enhanced in liver mitochondria from hyperthyroid rats as compared to that obtained in mitochondria from control rats. Kinetic analysis of the malate-citrate exchange reaction indicates that only the Vmax of this transporting process is enhanced, while there is practically no change in the Km values. Inhibitor titrations with the inhibitor palmitoyl-CoA show that mitochondria from hyperthyroid rats require the same concentrations of inhibitor to produce 100% inhibition of citrate uptake as control mitochondria, suggesting that the amount of functional translocase enzyme present is unaffected. The Arrhenius plot characteristics differ for tricarboxylate carrier activity in mitochondria from hyperthyroid rats as compared with control rats in that the break point of the biphasic plot decreases from 18.1 +/- 1.4 degrees C in controls to 12.9 +/- 1.2 degrees C in hyperthyroid animals. The hepatic mitochondrial lipid composition is altered significantly in hyperthyroid rats; the total cholesterol decreases and the phospholipids increase. The liver mitochondrial phospholipid composition is altered significantly in hyperthyroid rats. In particular negatively charged phospholipid cardiolipin increases by more than 50%. Minor alterations were found in the pattern of fatty acids. The thyroid hormone induced change in the activity of the tricarboxylate carrier can be ascribed either to a general modification of membrane lipid composition which increases the membrane fluidity and in turn the mobility of the carrier or to a more localized change of lipid domain (cardiolipin content) surrounding the carrier molecule in the mitochondrial membrane.  相似文献   

18.
The 2-oxoglutarate carrier from the inner membrane of bovine heart mitochondria was purified by chromatography on hydroxyapatite/celite and reconstituted with egg yolk phospholipid vesicles by the freeze-thaw-sonication technique. In the reconstituted system the incorporated 2-oxoglutarate carrier catalyzed a first-order reaction of 2-oxoglutarate/2-oxoglutarate exchange. The substrate affinity for 2-oxoglutarate was determined to be 65 +/- 18 microM (15 determinations) and the maximum exchange rate at 25 degrees C reaches 4000-22,000 mumol/min per g protein, in dependence of the particular reconstitution conditions. The activation energy of the exchange reaction is 54.3 kJ/mol. The transport is independent of pH in the range between 6 and 8. When the first fraction of the hydroxyapatite/celite column eluate was used for reconstitution, besides the 2-oxoglutarate/2-oxoglutarate exchange, a significant activity of unidirectional uptake was observed. This activity may be due to a population of the carrier protein which is in a different state.  相似文献   

19.
C. Indiveri  F. Palmieri  F. Bisaccia  R. Kr  mer 《BBA》1987,890(3):310-318
The 2-oxoglutarate carrier from the inner membrane of bovine heart mitochondria was purified by chromatography on hydroxyapatite / celite and reconstituted with egg yolk phospholipid vesicles by the freeze-thaw-sonication technique. In the reconstituted system the incorporated 2-oxoglutarate carrier catalyzed a first-order reaction of 2-oxoglutarate / 2-oxoglutarate exchange. The substrate affinity for 2-oxoglutarate was determined to be 65 ± 18 μM (15 determinations) and the maximum exchange rate at 25°C reaches 4000–22000 μmol / min per g protein, in dependence of the particular reconstitution conditions. The activation energy of the exchange reaction is 54.3 kJ / mol. The transport is independent of pH in the range between 6 and 8. When the first fraction of the hydroxyapatite / celite column eluate was used for reconstitution, besides the 2-oxoglutarate / 2-oxoglutarate exchange, a significant activity of unidirectional uptake was observed. This activity may be due to a population of the carrier protein which is in a different state.  相似文献   

20.
The monocarboxylate (pyruvate) carrier from bovine heart mitochondria was extracted from submitochondrial particles with Triton X-114 in the presence of cardiolipin. By a single hydroxylapatite chromatography step a 125-fold purification of the carrier protein could be achieved. High pyruvate/pyruvate-exchange activity was recovered, when the protein was reconstituted into phospholipid vesicles. No transport activity was observed, when the isolation occurred in the absence of phospholipids. The 2-cyano-4-hydroxycinnamate sensitive pyruvate exchange reaction was strongly temperature sensitive and dependent on the amount of protein reconstituted. Other 2-ketoacids caused competitive inhibition of the pyruvate uptake. Inhibitors of other mitochondrial carries, however, had very low or no effect on the monocarboxylate exchange. The influence of different -SH group reagents on the measured pyruvate/pyruvate-exchange in the reconstituted system was similar to the one observed with intact mitochondria. It is concluded that the described procedures for extraction, purification and reconstitution of the mitochondrial monocarboxylate carrier conserved the functional properties of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号