首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholestasis contributes to the genesis of fatigue through several mechanisms. Among these mechanisms, affected serotonergic neurotransmission is important in the pathogenesis of central fatigue. Previously, elevated levels of 5-hydroxyindole acetic acid (5-HIAA), the metabolite of 5-hydroxytryptamine (5-HT) and increased 5-HT(2) receptor density were demonstrated in the anterior hypothalamus and in the hippocampus of bile duct resected rats (BDR), respectively. The aim of this paper is to demonstrate evoked 5-HT release in selected brain regions like anterior hypothalamus and hippocampal CA1 regions of cholestatic rats using BDR rats as an experimental model for cholestasis. In this study, we analyzed the K+ evoked 5-HT and its metabolite 5-HIAA levels by using HPLC with electrochemical detection in the microdialysis samples collected from anterior hypothalamic and hippocampal CA1 regions of sham-operated and BDR rats (n = 6). The ratios of [5-HIAA] to [5-HT] following perfusion with 100 mM K+ artificial cerebrospinal fluid was used for the comparison of the evoked release of 5-HT. Locomotor activity was used to assess the signs of cholestasis associated fatigue in the BDR rats. The vertical and horizontal activity counts within 15 min were found to be decreased in the BDR rats compared to sham-operated rats (p < 0.05). Besides, the number of fecal boli (an index of emotionality) was also significantly fewer in the cholestatic rats (p < 0.05). No significant difference between the sham-operated and the BDR rats was detected in the basal 5-HT and 5-HIAA levels of anterior hypothalamus. K+ stimulation yielded a more profound increase in the [5-HIAA]/[5-HT] in the BDR rats (p < 0.05). The basal levels of 5-HT in CA1 region of the BDR rats was found to be lower than that of sham-operated group (p < 0.05), but no significant difference was observed in terms of evoked 5-HT release in both sham-operated and BDR rats. These findings imply the presence of affected serotonergic system in cholestasis.  相似文献   

2.
The effect of vasoactive intestinal peptide (VIP) on spontaneous and induced release of newly synthesized 5-hydroxytryptamine (5-HT) was studied in the suprachiasmatic area (SCA) using a superfusion system. To test the possible modualtion by E2 on the interaction VIP-5-HT, the experiments were conducted on male, ovariectomized (OVX) and ovariectomized oestradiol implanted rats (OVX-E2). VIP (10?7 M) infused for 15 min caused an increase of 5-HT release from SCA of male and OVX. The positive effect of VIP on 5-HT release results partially from an inhibition of the reuptake of 5-HT: in male and OVX SCA, VIP inhibited the 3H-5-HT uptake by 40 to 50%. The infusion of VIP before a pulse of K+ (10-20-30-56 mM) leads to a potentialisation of the evoked release suggesting that VIP sensitized the presynaptic membrane to the process linking depolarization and release. When SCA taken from OVX-E2 were exposed to VIP, 5-HT uptake and consequently 5-HT release were unchanged. The present results suggest that the metabolism of 5-HT in the SCA is influenced by VIP and that this regulation may be modulated by E2. This interaction between E2, VIP and 5-HT at the SCA level may be involved in the regulation of phasic LH and prolactin surge.  相似文献   

3.
《Theriogenology》2016,85(9):1556-1564
The aim of this study was to assess whether changes in kisspeptin and GnRH levels could be attributed to sex steroids at puberty onset. We used the ovariectomy (OVX) model in rats treated with 17β-estradiol (E2; OVX + E2), or oil (OVX + oil), and in intact rats treated with E2 (intact + E2) or oil only (intact + oil) to determine gene expression changes of Kiss1 and Gnrh1 in the hypothalamus and protein expression of kisspeptin and GnRH in the different areas of the hypothalamus. In the intact + E2 and OVX + E2 rats on the day of the onset of puberty, GnRH-immunoreactive (ir) cell numbers decreased (P < 0.05) in the arcuate nucleus but were increased in the preoptic area; Kisspeptin-ir cells increased (P < 0.05) in the arcuate nucleus, periventricular nucleus, and preoptic area; no difference (P > 0.05) was found in the paraventricularis nucleus for GnRH-ir or kisspeptin-ir cells. Additionally, levels of Kiss1 and Gnrh1 messenger RNA in the hypothalamus were significantly higher (P < 0.05) in the OVX + E2 or intact + E2 rats than in the OVX + oil or intact + oil animals, respectively. In the OVX + oil rats, OVX significantly increased (P < 0.05) levels of Gnrh1 and Kiss1 messenger RNA and the expression of GnRH and kisspeptin in the hypothalamus compared to intact + oil animals. These results suggest that kisspeptin and GnRH play major roles in modulating the activity of estrogen circuits at the onset of puberty.  相似文献   

4.
Ovariectomy (OVX) in rats is followed by a decline in behavioral sensitivity to combined estrogen and progesterone therapy. The purpose of this study was to further characterize this behavioral change, and to explore its biochemical basis in terms of estrogen and progesterone receptor concentrations in the brain. Sexually inexperienced female rats were used 5 (short-term) or 35 (long-term) days after OVX. Short- and long-term OVX animals were injected with estradiol-17β (E2; 36 μg/kg body wt, iv) then subjected to one of the following three treatment schedules. (1) Animals were treated with progesterone (1 mg, sc in oil) 20–21 hr after E2 injection, then tested at 24 hr for female sexual behavior. (2) One or twelve hours after the E2, cell nuclear estrogen receptors (ERn) were measured in the pituitary (PIT) and pooled preoptic area and mediobasal hypothalamus (POA-MBH). (3) Twenty-four hours after E2, progestin receptor (PRc) concentrations were measured in cytoplasmic fractions prepared from PIT and POA-MBH. Long-term OVX animals showed a reduced capacity to exhibit proceptive and receptive sexual behavior, and a lower PRc level in the PIT and POA-MBH 24 hr after E2 injection than animals that had been OVX for only 5 days. However, no differences were observed between long- and short-term OVX rats with respect to ERn concentrations in PIT and POA-MBH cell nuclei 1 or 12 hr after E2. Thus, it appears that the decline in behavioral responsiveness to E2 which occurs after ovariectomy cannot be attributed to a decrease in the ability of E2 to translocate estrogen receptors into POA-MBH cell nuclei, but is more probably associated with a change in the biochemical processes subsequent to ERn binding. One of these processes may well be the induction of cytoplasmic progestin receptors.  相似文献   

5.
Abstract— The effects of i.p. injections of SO mg/kg d,l-5-hydroxytryptophan (5-HTP) and saline alone on the in uitro release of endogenous serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were studied using preparations of axon terminals (P2 isolated from the telencephalon of rats. The level of 5-HT was 2-fold greater and the level of 5-HIAA was 5-fold greater in the P2 fraction isolated from rats given the d,l-5-HTP injection than from rats given saline injections. At 37°C the in vitro efflux of 5-HT and 5-HIAA from the P2 fractions of animals injected with 5-HTP 30min before killing was approx 3 times higher than the saline control group. The amount of 5-HT and 5-HIAA released at 37°C was 3–5 times higher than the amount released at 0°C for both the 5-HTP and saline injected rats. Increasing the concentration of potassium ions in the media to 55 mm significantly increased the release of 5-HT but not 5-HIAA in both groups of animals. The amount of 5-HT released by 55mm-K+ was about 2-fold higher from the P2 fraction isolated from rats given 5-HTP injections with respect to those given saline injections. The potassium stimulated release of 5-HT was calcium dependent. The data thus indicate that injection of 50 mg/kg d,l-5-HTP in rats can cause an increase in the level of 5-HT and 5-HIAA in a crude synaptosomal fraction and that as a result of this increase, there is a temperature dependent increased release of 5-HT and 5-HIAA under normal resting membrane conditions. There is also an increased release of 5-HT as a result of membrane depolarizing conditions induced by elevated potassium levels which is calcium dependent.  相似文献   

6.
Aim Brain is the major target for the actions of ethanol and it can affect the brain in a variety of ways. In the present study we have investigated the changes in 5-HT level and the 5-HT2A receptors in the ethanol-treated rats. Methods Wistar adult male rats of 180–200 g body weight were given free access to 15% (v/v) (approx.7.5 g/Kg body wt./day) ethanol for 15 days. Controls were given free access to water for 15 days. Brain 5-HT and its metabolites were assayed by high performance liquid chromatography (HPLC) integrated with an electrochemical detector (ECD) fitted with C-18-CLS-ODS reverse phase column. 5-HT2A receptor binding assay was done with different concentrations of [3H] MDL 100907. Results The hypothalamic 5-HT content significantly increased (< 0.001) with a decreased (< 0.001) 5-HIAA/5-HT turnover in the ethanol-treated rats when compared to control. The corpus striatum 5-HT content significantly decreased (< 0.01) with increased (< 0.01) 5-HIAA/5- HT turnovers in the ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in hypothalamus showed a significant increase (< 0.001) in Bmax with a decreased affinity (< 0.001) in ethanol-treated rats when compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. An increased Ki and log (EC50) value were also observed in ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in the corpus striatum of ethanol-treated rats showed a significant increase (< 0.001) in Bmax and in affinity (< 0.01) when compared to control. The change in affinity of the receptor protein in both corpus striatum and hypothalamus shows an altered receptor. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. There was no significant change in Ki and log (EC 50) value in ethanol-treated rats when compared to control. Conclusion The present study demonstrated the enhanced 5-HT2A receptor status in hypothalamus and corpus striatum. The ethanol-induced enhanced 5-HT2A receptors in the hypothalamus and corpus striatum has clinical significance in the better management of ethanol addiction. This will have therapeutic application.  相似文献   

7.
In the unrestrained rat, the hyperphagic-like ingestion of food evoked by the sustained elevation of neuropeptide-Y (NPY) in the hypothalamus was correlated with the release and turnover of monoaminergic transmitters in this structure. A single guide tube was implanted stereotaxically in the perifornical region of the hypothalamus for localized push-pull perfusion of an artificial CSF vehicle or NPY1–36 in a concentration of 10, 50, or 100 ng/1.0 l. After the rat was fully satiated, a site reactive to NPY was perfused repeatedly at a rate of 20 l/min for 6.0 min with an interval of 6.0–12 min elapsing between each perfusion. Samples of perfusate were analyzed by HPLC with coulometric detection for DA, HVA, DOPAC, NE, MHPG, 5-HT, and 5-HIAA. Although control perfusions were without effect on feeding or monoamine activity, NPY evoked mean cumulative intakes of food of 14±2.4, 25.6±3.0 and 26.5±3.2 g in response to 10, 50, or 100 ng/l concentrations of NPY, respectively, over the 4.0–5.0 hr test interval. HPLC analyses showed that during feeding the release of both NE and DA was enhanced significantly. The turnover of both catecholamines likewise increased significantly as reflected by the elevated levels of MHPG, DOPAC and HVA. However, neither the basal efflux of 5-HT nor its turnover, as reflected by the output of 5-HIAA, was affected during feeding induced by NPY perfused in the hypothalamus. These results suggest that a sustained elevation of NPY in the hypothalamus causes a perturbation in the basal activity of NE and DA which are both implicated in the neuronal mechanism regulating normal eating behavior. Thus, these catecholamine neurotransmitters are envisaged to comprise an intermediary step in the functional role played by NPY in the hypothalamus in integrating the control of energy metabolism and caloric intake.  相似文献   

8.
G protein-coupled receptor (GPR) 30 is a novel estrogen receptor. Recent studies suggest that activation of the GPR30 confers rapid cardioprotection in isolated rat heart. It is unknown whether chronic activation of GPR30 is beneficial or not for heart failure. In this study we investigated the cardiac effect of sustained activation or inhibition of GPR30. Female Sprague–Dawley rats were divided into 7 groups #2Q1: sham surgery (Sham), bilateral ovariectomy (OVX), OVX+estrogen (E2), OVX+isoproterenol (ISO), OVX+ISO+G-1, OVX+ISO+E2+G15, OVX+ISO+E2. ISO (85 mg/kg×17 day, sc) was given to make the heart failure models. G-1(120 µg/kg·d×14 day) was used to activate GPR30 and G15 (190 µg/kg·d×14 day) was used to inhibit GPR30. Concentration of brain natriuretic peptide in serum, masson staining in isolated heart, contractile function and the expression of β1 and β2- adrenergic receptor (AR) of ventricular myocytes were also determined. Our data showed that ISO treatment led to heart failure in OVX rats. G-1 or E2 treatment decreased concentration of brain natriuretic peptide, reduced cardiac fibrosis, and enhanced contraction of the heart. Combined treatment with β1 (CGP20712A) and β2-AR (ICI118551) antagonist abolished the improvement of myocardial function induced by G-1. We also found that chronic treatment with G-1 normalized the expression of β1-AR and increased the expression of β2-AR. Our results indicate that chronic activation of the GPR30 with its agonist G-1 attenuates heart failure by normalizing the expression of β1-AR and increasing the expression of β2-AR.  相似文献   

9.
Using dizocilpine (MK-801), we tested the hypothesis that N-methyl-D-aspartate (NMDA) receptors are important controllers of cerebral O2 supply/consumption balance in newborn piglets both during normoxia and hypoxia. Twenty-five 2 to 7-day-old piglets were anesthetized and divided into four groups: (1) Normoxia (n = 6), (2) Normoxia + MK-801 (n = 6), (3) Hypoxia (n = 6), and (4) Hypoxia + MK-801 (n = 7). Regional cerebral blood flow (rCBF) in ml/min/100 g was measured using 14C-iodoantipyrine, and we determined arterial and venous O2 saturations by microspectrophotometry, calculating cerebral O2 consumption (VO2) in ml O2/min/100 g in the cortex, hypothalamus and pons. MK-801 did not significantly affect regional VO2 or rCBF in normoxic piglets. Hypoxia resulted in an increase in local rCBF compared to controls: from 41 ± 6 to 103 ± 18 in the cortex; 34 ± 7 to 101 ± 20 in the hypothalamus; and 45 ± 10 to 95 ± 11 in the pons. Pretreatment with MK-801 abolished this hypoxic flow effect in the cortex (51 ± 2) and hypothalamus (49 ± 5), but not in the pons (91 ± 17). Similar results were observed for VO2 with control values of 1.9 ± 0.3, 1.6 ± 0.2 and 2.1 ± 0.3 for the cortex, hypothalamus and pons respectively. Hypoxia resulted in an increase in the VO2 to 3.9 ± 0.4 (cortex), 3.8 ± 0.6 (hypothalamus) and 3.9 ± 0.8 (pons). Pretreatment with MK-801 prior to hypoxia abolished these effects in the cortex (2.1 ± 0.2) and hypothalamus (2.1 ± 0.2), but not in the pons (2.9 ± 0.2). These findings suggest that NMDA receptors may play a role in the control of cerebral metabolism during hypoxia in this immature porcine model.  相似文献   

10.
We previously reported that serotonergic activity was reduced in the ventromedial hypothalamic nucleus (VMN) of obese vs. lean male Zucker rats. To verify that this reduction was associated with genotype rather than gender, we measured monoamines and their major metabolites in hypothalamic nuclei of ll-week-old female lean (Fa/Fb) and obese (fa/fb) Zucker rats. In addition, since the thermic response to cold is reported to differ between lean and obese rats, some rats were also exposed to 9° or 22° C for 2h to determine if cold exposure altered hypothalamic monoaminergic activity. As in males, levels of 5-hydroxyindoleacetic acid [5-HIAA; major metabolite of serotonin (5-HT)] and the ratio of 5-HIANS-HT were lower in the VMN of obese vs. lean females (P = 0.008, 0.001, respectively). S-HIANS-HT was also reduced in the paraventricular (PVN) and suprachiasmatic nuclei (SCN) of the obese compared to the lean females. Cold exposure significantly stimulated brown fat mitochondria1 GDP binding in lean but not obese rats. Similarly, levels of norepinephrine, dopamine (DA), 5-HIAA, and 5-HT in the PVN, and 5-HIAA in the SCN increased in cold-exposed lean but not obese rats. In contrast, VMN and preoptic 3,4-dihydroxyphenylacetic acid (DOPAC; major metabolite of DA) increased in the cold-exposed obese but not lean animals. We conclude that: (1) the blunted peripheral response to cold in obese vs. lean Zucker rats is accompanied by altered hypothalamic monoaminergic activity, the physiological role of which needs further evaluation; and 2) depressed VMN serotonergic activity is associated with the obese genotype (fa/fa) rather than gender and as such may contribute to the reduced sympathetic and enhanced parasympathetic outflow from the VMN .  相似文献   

11.

Background

An endogenous dopaminergic (DA) tone acting on D3 receptors has been shown to inhibit tuberoinfundibular (TI) DA neuron activity and stimulate prolactin (PRL) surge in the afternoon of estrogen-primed ovariectomized (OVX+E2) rats. Whether D2 receptor (D2R) is also involved in the regulation of TIDA and PRL rhythms was determined in this study.

Results

Intracerebroventricular (icv) injection of PHNO, a D2R agonist, in the morning inhibited TIDA and midbrain DA neurons’ activities, and stimulated PRL secretion. The effects of PHNO were significantly reversed by co-administration of raclopride, a D2R antagonist. A single injection of raclopride at 1200 h significantly reversed the lowered TIDA neuron activity and the increased serum PRL level at 1500 h. Dopamine D2R mRNA expression in medial basal hypothalamus (MBH) exhibited a diurnal rhythm, i.e., low in the morning and high in the afternoon, which was opposite to that of TIDA neuron activity. The D2R rhythm was abolished in OVX+E2 rats kept under constant lighting but not in OVX rats with regular lighting exposures. Pretreatment with an antisense oligodeoxynucleotides (AODN, 10 μg/3 μl/day, icv) against D2R mRNA for 2 days significantly reduced D2R mRNAs in central DA neurons, and reversed both lowered TIDA neuron activity and increased serum PRL level in the afternoon on day 3. A diurnal rhythm of D2R mRNA expression was also observed in midbrain DA neurons and the rhythm was significantly knocked down by the AODN pretreatment.

Conclusions

We conclude that a diurnal change of D2R mRNA expression in MBH may underlie the diurnal rhythms of TIDA neuron activity and PRL secretion in OVX+E2 rats.  相似文献   

12.
In this report, we have reviewed recent information gathered by probing with a push-pull cannula (PPC) the in vivo activity of the suprachiasmatic nucleus (SCN), hypothalamus, and anterior pituitary gland of freely moving animals. In male and female rats, probing of the SCN with the PPC revealed distinct oscillatory patterns of 5-hydroxy indole-acetic acid (5-HIAA) output very much dependent on the position of the cannula. In males, it was also possible to demonstrate, for the first time, in vivo output of immunoreactive vasopressin (VP) most likely from the SCN. Interestingly, the output of VP was stimulated by local activation of probable 5-hydroxytryptamine (5-HT) terminals with 5-hydroxytryptophan (5-HTP), a precursor of 5-HT synthesis. Probing the hypothalamus of rats and rabbits revealed that the in vivo release of luteinizing hormone-releasing hormone (LHRH) (frequency and amplitude of the LHRH signal) can be altered by administration of estrogen to ovariectomized rats; in both species, progesterone stimulated the amplitude of the LHRH signal, but only when this steroid was infused in pulses--the physiological mode of circulating progesterone in the rat. Further, in male rabbits, pulses of progesterone did not stimulate LHRH release. Last, probing the anterior pituitary with the PPC revealed that a series of push-pull perfusions could be performed in the same animal under different experimental conditions for nearly 60 days of experimentation. It also resolved the apparent paradox that after castration, decreased instead of increased activity of the neural LHRH apparatus was noticed when the PPC was positioned in the hypothalamus. Moving the PPC to the anterior pituitary revealed that castration was accompanied by an increase in the amplitude and frequency of the LHRH signals arriving in the anterior pituitary of castrated male rats. This mode of operation of the LHRH pulse generator is clearly compatible with the mode of luteinizing hormone (LH) release in gonadectomized animals. Finally, based on these results, a hypothetical model of the operation of the LHRH pulse generator has been proposed.  相似文献   

13.
We investigated the effect of 17β-estradiol (E2) alone and separately vitamin E treatment on trace element status of rats following an ovariectomic operation. Forty rats were equally divided into four groups: Group 1, control, non-ovariectomized rats; Group 2, (OVX) rats, ovariectomized under general anesthesia; Group 3, (OVX+E2) rats, the group received a 40 μg kg−1 subcutan dose of E2 per day after ovariectomy; and Group 4, (OVX + E2 + vitamin E) rats, received the same E2 treatment, but with an additional 100 mg kg−1 intraperitoneal dose of vitamin E per day after ovariectomy. At the end of the 30-day experiment, the rats were sacrificed and their blood was collected for the measurement of zinc, copper, iron, phosphorus, selenium, magnesium, calcium, manganese, and chromium; copper–zinc superoxide dismutase (SOD); manganese-superoxide dismutase (Mn-SOD); glutathione peroxidase (Se-GSH-Px); and catalase (CAT). The levels of zinc, copper, iron, phosphorus, selenium, calcium, chromium, and manganese and activities of SOD, Mn-SOD, Se-GSH-Px, and CAT were lower in the OVX than in the control group, but magnesium level was unaffected. However, zinc, copper, iron, phosphorus, selenium, calcium, chromium, and manganese levels and SOD, Mn-SOD, Se-GSH-Px, and CAT activities were higher under separate E2 and E2 + vitamin E treatments. The level of magnesium in the treated-OVX groups was not different than in the OVX group. In conclusion, E2 treatment has an ameliorating effect on the trace element status in OVX, and this effect may be enhanced with the addition of vitamin E.  相似文献   

14.
M Arisawa  G D Snyder  S M McCann 《Peptides》1989,10(4):763-766
The role of substance P (SP) on thyrotropin (TSH) secretion was investigated in ovariectomized (OVX) female, estrogen-primed OVX, and normal male rats. Third ventricular administration of SP induced a significant increase in plasma TSH levels when compared to control animals in E-primed OVX rats (p less than 0.001). The plasma TSH levels increased in a dose-related manner and reached maximum levels at 10 min after injection. In contrast, intraventricularly injected SP failed to alter plasma TSH levels in both OVX rats and normal male rats. Intravenous administration of SP dramatically stimulated TSH release in E-primed OVX rats (p less than 0.001), whereas SP had no effect on the release of TSH when injected in OVX rats and normal male rats. To investigate any direct action of SP on TSH release from the anterior pituitary gland, synthetic SP was incubated with dispersed anterior pituitary cells harvested from E-primed OVX rats and normal male rats. SP, in the dose range between 10(-8) M and 10(-6) M, failed to alter the release of TSH into the culture medium in vitro. These findings indicate that SP has a stimulatory role in the control of TSH release by an action on the hypothalamus but only in estrogen-primed rats.  相似文献   

15.
《Gender Medicine》2008,5(2):147-159
Background: The incidence of chronic renal disease in women increases with aging, especially after menopause, suggesting that loss of sex hormones may contribute to the development and progression of renal disease. However, the mechanisms by which sex hormones, particularly estrogens, contribute to the disease process are unclear.Objective: The present study examined the effects of ovariectomy (OVX) with or without 17²-estradiol (E2) supplementation (OVX+E2) on the expression of inducible (iNOS) and endothelial (eNOS) nitric oxide synthase in the kidney.Methods: The study was performed in young (4 months [4M]) and aged (12 months [12M]) female Dahl salt-sensitive rats fed a low-sodium (0.1% NaCl) diet. At 3 months of age, the animals were either subjected to sham surgery, OVX, or OVX with implantation of an E2 silastic pellet. The treatments were administered for either 1 or 9 months, rendering the animals 4 months of age or 12 months of age at the time of sacrifice, respectively. Renal expression of NOS isoforms was measured by Western blotting and immunohistochemistry.Results: OVX in the aged rats was associated with 35% and 25% decreases in medullary iNOS (mean [SEM] relative optical density [ROD]: 4M OVX, 1.81 [0.14] vs 12M OVX, 1.17 [0.16]; P < 0.05) and eNOS (mean ROD: 4M OVX, 1.91 [0.09] vs 12M OVX, 1.43 [0.15]; P < 0.05) protein expression, respectively, and a 25-fold increase in the abundance of CD68-positive cells, indicating macrophage infiltration (mean cells/mm2: 4M OVX, 1.18 [0.09] vs 12M OVX, 30.0 [0.74]; P < 0.001). E2 supplementation either partially or completely attenuated these changes in iNOS (mean ROD: 4M OVX+E2, 2.26 [0.08] vs 12M OVX+E2, 1.70 [0.09]; P < 0.05), eNOS (mean ROD: 4M OVX+E2, 2.03 [0.07] vs 12M OVX+E2, 1.77 [0.11]; P = NS) and CD68 (mean cells/mm2: 4M OVX+E2, 1.46 [0.07] vs 12M OVX+E2, 6.87 [1.6]; P < 0.01) associated with OVX in the aging kidney.Conclusions: These data suggest that ovarian E2 loss with aging may contribute to the development of age-related renal disease through downregulation of iNOS and eNOS protein abundance and increased renal inflammation in this animal model. Furthermore, E2 supplementation may be protective in the aging kidney by attenuating these changes.  相似文献   

16.

Aims

The aim of this study was to elucidate myocardial interstitial serotonin (5-HT) kinetics in the heart, including 5-HT reuptake and enzymatic degradation to 5-hydroxyindole acetic acid (5-HIAA) via monoamine oxidase (MAO).

Main methods

Using microdialysis technique in anesthetized rats, we simultaneously monitored myocardial interstitial levels of 5-HT and its major metabolite, 5-HIAA, in the left ventricle and examined the effects of local administration of a MAO inhibitor, pargyline, or a 5-HT uptake inhibitor, fluoxetine.

Key findings

Pargyline increased dialysate 5-HT concentration from 1.8 ± 0.3 at baseline to 3.9 ± 0.5 nM but decreased dialysate 5-HIAA concentration from 20.7 ± 1.0 at baseline to 15.8 ± 1.4 nM at 60–80 min of administration. Fluoxetine increased dialysate 5-HT concentration from 1.9 ± 0.4 at baseline to 6.5 ± 0.9 nM at 60–80 min of administration, but did not change dialysate 5-HIAA concentration. Local administration of ADP (100 mM) increased dialysate 5-HT and 5-HIAA concentrations. Pargyline did not affect ADP-induced increase in dialysate 5-HT concentration but suppressed ADP-induced increase in dialysate 5-HIAA concentration during 60 min of ADP administration. Fluoxetine increased dialysate 5-HT concentration at 40–60 min of ADP administration, but did not affect ADP-induced increase in dialysate 5-HIAA concentration.

Significance

Simultaneous monitoring of myocardial interstitial 5-HT and 5-HIAA levels provides valuable information on 5-HT kinetics including reuptake and enzymatic degradation by MAO, which play a role in the regulation of myocardial interstitial 5-HT levels at baseline and when 5-HT levels are elevated.  相似文献   

17.
SYNOPSIS. The technique of in vivo brain microdialysis rapidlyis becoming a popular tool for research on the neurochemicalbasis of physiological and behavioral functions. The presentstudy describes the application of microdialysis to investigatethe endogenous release of 5-hydroxyindoleacetic acid (5-HIAA)and glutamic acid in the suprachiasmatic nuclei (SCN) of hamsters.There were apparent circadian patterns of release of both ofthese neurosecretions, with peak levels occurring during thedark phase. Pharmacological manipulations of serotonin releaseand reuptake, using tetrodotoxin and citalopram, respectively,provided evidence that the nocturnal increase in 5-HIAA reflectsan increase in serotonergic synaptic activity, rather than intraneuronalmetabolism of unreleased serotonin. These results illustratethe usefulness of the microdialysis technique for studies onthe neurochemistry of central pacemaker function.  相似文献   

18.
(1) Circadian clocks have been localized to discrete sites within the nervous system of several organisms and in mammals to the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN controls and regulates the production and discharge of melatonin (hormonal message of darkness) from the pineal gland via a multisynaptic efferent pathway. The nocturnal rise in melatonin production from serotonin results due to an increased activity of serotonin N-acetyl transferase (NAT). (2) The complex interaction between alcohol and biological clock need to be understood as alcoholism results in various clock linked neuronal disorders especially loss of memory and amnesia like state of consciousness, sleep disorders, insomnia, dementia etc. (3) Serotonin, 5-Hydroxy-tryptamine (5-HT) plays an important role in mediating alcohol’s effects on the brain. Understanding the impact of alcohol consumption on circadian system is a pre-requisite to help in treatment of alcohol induced neurological disorders. We, therefore, studied the effect of ethanol drinking and ethanol withdrawal on daily rhythms of serotonin and its metabolite, 5-hydroxy-indole acetic acid (5-HIAA) in SCN and Pineal of adult male Wistar rats maintained under light-dark (LD, 12:12) conditions. (4) Curcumin is well known for its protective properties such as antioxidant, anti-carcinogenic, anti-viral and anti-infectious etc. Hence, we studied the effect of curcumin on ethanol induced changes on 5-HT and 5-HIAA levels and rhythms in SCN and Pineal. (5) Ethanol withdrawal could not restore either rhythmicity or phases or levels of 5-HT and 5-HIAA. Curcumin administration resulted in partial restoration of daily 5-HT/5-HIAA ratio, with phase shifts in SCN and in Pineal. Understanding the impact of alcohol consumption on circadian system and the role of herbal medication on alcohol withdrawal will help in treatment of alcohol induced neurological disorders.  相似文献   

19.
Intact female (SHAM), ovariectomized (OVX), OVX with estradiol (E2), and male (MALE) rats, had core temperature (Tc), heart rate (HR), and activity (ACT) measured every 5 min for 10 days. E2 lowered Tc (SHAM > MALE ⩾ OVX > E2) and increased ACT (E2 > all other groups). Diurnal and mean 24 h HR was reduced in resting animals by E2 (OVX > SHAM > E2 > MALE). Significant differences in Tc and HR were quantified without the need to align the SHAM female data by estrus cycle phase. Telemetered female rats provide a sensitive model with which to measure the effects of subtle thermoeffectors on temperature regulation.  相似文献   

20.
The influence of the pineal gland on the hypothalamic serotonergic function was examined by studying the effects of long-term pinealectomy (1 month) and melatonin replacement (500 μg/kg; 10 days) on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content as well as on the in vivo 5-HT synthesis rate in discrete hypothalamic nuclei. Pinealectomy was followed by a significant decrease of 5-HT content in the anterior hypothalamic nuclei (AHN) and the ventromedial hypothalamic nuclei (VMHN), and also in 5-HIAA content in lateral (LPON) and medial preoptic nuclei (MPON). The 5-HT synthesis rate, estimated from the accumulation of 5-hydroxytryptophan after blockade of the 1-amino acid decarboxylase activity, were also decreased in the AHN and the paraventricular hypothalamic nuclei (PVHN) of pinealectomized rats. In contrast, an enhanced 5-HT synthesis rate and basal 5-HIAA content were found in the suprachiasmatic nuclei (SCN) after pinealectomy. Daily treatment with melatonin for 10 days reversed most of the effects induced by pinealectomy. Thus, melatonin increased the levels of 5-HT in the AHN and VMHN, and slightly increased the 5-HIAA content in preoptic nuclei. In addition, melatonin increased the 5-HT synthesis rate in the AHN and VMHN, but also in the MPON, VMHN and dorsomedial hypothalamic nuclei (DMHN) where pinealectomy had no effect. By contrast, melatonin treatment did not affect SCN 5-HT synthesis rate, although it decreased 5-HIAA levels. The results demonstrate that melatonin is able to stimulate 5-HT metabolism in most of the hypothalamic areas, but inhibits SCN 5-HT function. Some of the effects of melatonin seems to be exerted by modulating the synthesis of the amine, although melatonin likely also interacts with other regulatory processes of 5-HT function (i.e. release/uptake). The well defined presence of melatonin receptors in the rat SCN, and its absence in other hypothalamic structures, suggest that this may be the mechanism mediating the differential response to endogenous melatonin. Moreover, the larger effect of exogenous melatonin in relation to pinealectomy suggests the presence of melatonin unespecific effects possibly owing to supraphysiological doses. The present findings may be relevant for the mode of action of melatonin and its implication in several endocrine and behavioral functions mediated by serotonergic neurons. Copyright © 1996 Elsevier Science Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号