首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Integrins play pivotal roles in supporting shear- and mechanical-stress-resistant cell adhesion and migration. These functions require the integrity of the short beta subunit cytoplasmic domains, which contain multiple, highly conserved tyrosine-based endocytic signals, typically found in receptors undergoing regulated, clathrin-dependent endocytosis. We hypothesized that these sequences may control surface integrin dynamics in statically adherent and/or locomoting cells via regulated internalization and polarized recycling of the receptors. By using site-directed mutagenesis and ectopic expression of the alphaL/beta2 integrin in Chinese hamster ovary cells, we found that Y735 in the membrane-proximal YRRF sequence is selectively required for recycling of spontaneously internalized receptors to the cell surface and to growth factor-induced membrane ruffles. Disruption of this motif by non-conservative substitutions has no effect on the receptor's adhesive function, but diverts internalized integrins from a recycling compartment into a degradative pathway. Conversely, the non-conservative F754A substitution in the membrane-proximal NPLF sequence abrogates ligand-dependent adhesion and spreading without affecting receptor recycling. Both of these mutants display a severe impairment in ligand-supported migration, suggesting the existence in integrin cytoplasmic domains of independent signals regulating apparently unrelated functions that are required to sustain cell migration over specific ligands.  相似文献   

2.
We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (alphaMbeta2) but not lymphocyte function-associated antigen-1 (LFA-1; alphaLbeta2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 chemokine receptor transfectants or by stromal-derived factor-1alpha in Jurkat cells. Differential kinetics for activation of Mac-1 (sustained) and LFA-1 (transient) avidity in response to stromal-derived factor-1alpha were confirmed by expression of alphaM or alphaL in alphaL-deficient Jurkat cells. Moreover, expression of chimeras containing alphaL and alphaM cytoplasmic domain exchanges indicated that alpha cytoplasmic tails conferred the specific mode of regulation. Coexpressing alphaM or chimeras in mutant Jurkat cells with a "gain of function" phenotype that results in constitutively active LFA-1 demonstrated that Mac-1 was not constitutively active, whereas constitutive activity was mediated via the alphaL cytoplasmic tail, implying the presence of distinct signaling pathways for LFA-1 and Mac-1. Transendothelial chemotaxis of monocytes in response to MCP-1 was dependent on LFA-1; however, Mac-1 was involved at MCP-1 concentrations stimulating its avidity, showing differential contributions of beta2 integrins. Our data suggest that a specific regulation of beta2 integrin avidity by chemokines may be important in leukocyte extravasation and may be triggered by distinct activation pathways transduced via the alpha subunit cytoplasmic domains.  相似文献   

3.
Rab GTPases are recognized as critical regulatory factors involved in vesicular membrane transport and endosomal fusion. For example, Rab5 directs the transport and fusion of endocytic vesicles to and with early endosomes, whereas Rab4 is thought to control protein trafficking from early endosomes back to the plasma membrane. In the present study, we investigated the role of Rab5 and Rab4 GTPases in regulating the endocytosis, intracellular sorting, and the plasma membrane recycling of the beta(2)AR. In cells expressing the dominant-negative Rab5-S34N mutant, beta(2)AR internalization was impaired, and beta(2)AR-bearing endocytic vesicles remained in either close juxtaposition or physically attached to the plasma membrane. In contrast, a constitutively active Rab5-Q79L mutant redirected internalized beta(2)AR to enlarged endosomes but did not prevent beta(2)AR dephosphorylation and recycling. The expression of either wild-type Rab4 or a Rab4-N121I mutant did not prevent beta(2)AR dephosphorylation. However, the dominant-negative Rab4-N121I mutant blocked beta(2)AR resensitization by blocking receptor recycling from endosomes back to the cell surface. Our data indicate that, in addition to regulating the intracellular trafficking and fusion of beta(2)AR-bearing endocytic vesicles, Rab5 also contributes to the formation and/or budding of clathrin-coated vesicles. Furthermore, beta(2)AR dephosphorylation occurs as the receptor transits between Rab5- and Rab4-positive compartments.  相似文献   

4.
5.
Rap1 is a potent inside-out signal that increases LFA-1 adhesive activity. In this study, we have defined the cytoplasmic region of the alphaL and beta2 integrin that are required for Rap1-stimulated adhesion and subsequent migration on ICAM-1. Human LFA-1 bearing truncated and point-mutated alphaL and beta2 cytoplasmic regions were reconstituted in mouse IL-3-dependent proB cells, BAF/3. Truncation of the alphaL, but not beta2 subunit cytoplasmic region, abolished Rap1V12-dependent adhesion to ICAM-1. The alanine substitution of two lysine residues (K1097/K1099) in the alphaL subunit was found to be critical in adhesion induced by Rap1V12, but not PMA. This mutation suppressed Rap1V12-induced LFA-1 conformation changes and ligand-binding affinity. The K1097/K1099 mutation also impaired binding to ICAM-1 induced by TCR cross-linking or SDF-1. In contrast, the alanine substitution for tyrosine in the beta2 subunit endocytosis motif inhibited internalization of LFA-1, and severely impaired detachment at the cell rear, which resulted in long-elongated cell shapes. This result demonstrates that internalization of LFA-1 is a critical step in the deadhesion process. Our study revealed novel requirements of amino acid residues of the LFA-1 cytoplasmic region in the response to the inside-out signaling and the subsequent deadhesion process.  相似文献   

6.
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.  相似文献   

7.
Regulation of the number of Ca2+-activated K+ channels at the endothelial cell surface contributes to control of the endothelium-derived hyperpolarizing factor response, although this process is poorly understood. To address the fate of plasma membrane-localized KCa2.3, we utilized an extracellular epitope-tagged channel in combination with fluorescence and biotinylation techniques in both human embryonic kidney cells and the human microvascular endothelial cell line, HMEC-1. KCa2.3 was internalized from the plasma membrane and degraded with a time constant of 18 h. Cell surface biotinylation demonstrated that KCa2.3 was rapidly endocytosed and recycled back to the plasma membrane. Consistent with recycling, expression of a dominant negative (DN) RME-1 or Rab35 as well as wild type EPI64C, the Rab35 GTPase-activating protein, resulted in accumulation of KCa2.3 in an intracellular compartment. Expression of DN RME-1, DN Rab35, or wild type EPI64C resulted in a decrease in steady-state plasma membrane expression. Knockdown of EPI64C increased cell surface expression of KCa2.3. Furthermore, the effect of EPI64C was dependent upon its GTPase-activating proteins activity. Co-immunoprecipitation studies confirmed an association between KCa2.3 and both Rab35 and RME-1. In contrast to KCa2.3, KCa3.1 was rapidly endocytosed and degraded in an RME-1 and Rab35-independent manner. A series of N-terminal deletions identified a 12-amino acid region, Gly206–Pro217, as being required for the rapid recycling of KCa2.3. Deletion of Gly206–Pro217 had no effect on the association of KCa2.3 with Rab35 but significantly decreased the association with RME-1. These represent the first studies elucidating the mechanisms by which KCa2.3 is maintained at the plasma membrane.  相似文献   

8.
Directional cell motility is a complex process requiring orchestration of signals from diverse cell adhesion receptors for proper organization of neuronal groups in the brain. The L1 cell adhesion molecule potentiates integrin-dependent migration of neuronal cells and stimulates integrin endocytosis but its mechanism of action is unclear. The hypothesis was investigated that L1 stimulates cell motility by modulating surface levels of integrins through intracellular trafficking using a model cell system. Antibody-induced clustering of L1, which mimics ligand binding, induced formation of cell surface complexes of L1 and beta1 integrins in L1-expressing HEK293 cells. L1 formed cell surface complexes with integrin beta1 and alpha3 subunits but not with integrin alpha1. Following cell surface clustering, beta1 integrins and L1 became rapidly internalized into Rab5+ early endosomes. Internalization of L1 and beta1 integrins was prevented by treatment with monodansyl cadaverine (MDC), an inhibitor of clathrin-dependent endocytosis, and by deletion of the AP2/clathrin binding motif (RSLE) from the L1 cytoplasmic domain. MDC treatment coordinately inhibited L1-potentiated haptotactic migration of HEK293 cells to fibronectin in Transwell assays. These results suggested that downregulation of adhesive complexes of L1 and beta1 integrin at the plasma membrane by clathrin-mediated endocytosis is a potential mechanism for enhancing cell motility.  相似文献   

9.
LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) are members of the beta2 integrins involved in leukocyte function during immune and inflammatory responses. We aimed to determine a minimized beta2 subunit that forms functional LFA-1 and Mac-1. Using a series of truncated beta2 variants, we showed that the subregion Q23-D300 of the beta2 subunit is sufficient to combine with the alphaL and alphaM subunits intracellularly. However, only the beta2 variants terminating after Q444 promote cell surface expression of LFA-1 and Mac-1. Thus, the major cysteine-rich region and the three highly conserved cysteine residues at positions 445, 447, and 449 of the beta2 subunit are not required for LFA-1 and Mac-1 surface expression. The surface-expressed LFA-1 variants are constitutively active with respect to ICAM-1 adhesion and these variants express the activation reporter epitope of the mAb 24. In contrast, surface-expressed Mac-1, both the wild type and variants, require 0. 5 mM MnCl2 for adhesion to denatured BSA. These results suggest that the role of the beta2 subunit in LFA-1- and Mac-1-mediated adhesion may be different.  相似文献   

10.
The activity of integrins on leukocytes is tightly controlled, and their adhesion capacity shifts rapidly when cells emigrate from the blood to the tissues. The leukocyte-specific beta2 integrin LFA-1 (alphaLbeta2) is the most important integrin expressed by leukocytes that regulate lymphocyte migration and the initiation of an immune response through binding to ICAM-1,-2 or-3. The binding activity of LFA-1 is rapidly altered by intracellular stimuli that activate LFA-1. Although alterations in the affinity of LFA-1, which leads to enhanced ICAM-1 binding, have been proposed, evidence is emerging that dynamic reorganisation of LFA-1 into microclusters is the major mechanism that regulates its binding capacity.  相似文献   

11.
Rab1a is a member of the Rab family of small GTPases with a well characterized function in the regulation of vesicle trafficking from the endoplasmic reticulum to the Golgi apparatus and within Golgi compartments. The integrin family heterodimeric transmembrane proteins serve as major receptors for extracellular matrix proteins, which play essential roles in cell adhesion and migration. Although effects on intracellular trafficking of integrins or other key cargos by Rab1a could influence cell migration, the regulatory mechanisms linking Rab1a to cell migration are not well understood. Here, we report identification of Rab1a as a novel regulator of cell migration using an unbiased RNAi screen targeting GTPases. Inhibition of Rab1a reduced integrin-mediated cell adhesion and spreading on fibronectins, reduced integrin β1 localization to lipid rafts, and decreased recycling of integrin β1 to the plasma membrane. Analysis of Rab1a effector molecules showed that p115 mediated Rab1a regulation of integrin recycling and lipid raft localization in cell migration. Taken together, these results suggest a novel function for Rab1a in the regulation of cell migration through controlling integrin β1 recycling and localization to lipid rafts via a specific downstream effector pathway.  相似文献   

12.
Integrin trafficking from and to the plasma membrane controls many aspects of cell behavior including cell motility, invasion, and cytokinesis. Recruitment of integrin cargo to the endocytic machinery is regulated by the small GTPase Rab21, but the detailed molecular mechanisms underlying integrin cargo recruitment are yet unknown. Here we identify an important role for p120RasGAP (RASA1) in the recycling of endocytosed α/β1-integrin heterodimers to the plasma membrane. Silencing of p120RasGAP attenuated integrin recycling and augmented cell motility. Mechanistically, p120RasGAP interacted with the cytoplasmic domain of integrin α-subunits via its GAP domain and competed with Rab21 for binding to endocytosed integrins. This in turn facilitated exit of the integrin from Rab21- and EEA1-positive endosomes to drive recycling. Our results assign an unexpected role for p120RasGAP in the regulation of integrin traffic in cancer cells and reveal a new concept of competitive binding of Rab GTPases and GAP proteins to receptors as a regulatory mechanism in trafficking.  相似文献   

13.
By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.  相似文献   

14.
BACKGROUND: It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. RESULTS: The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. CONCLUSIONS: We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.  相似文献   

15.
A central region of the beta2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from beta1 and beta7 to give the chimeras beta2RN1 and beta2RN7. Whilst the former construct failed to form heterodimer at the cell surface with alphaL, the later of these could be expressed together with the alphaL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the beta2RB1 chimera failed to support LFA-1 expression. Thus the beta1 specific residues of this region affect the interaction with the alphaL subunit. Whereas the alphaL/beta2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the alphaLbeta2BN1 and alphaLbeta2BN7, as well as the alphaLbeta2RN7, variants are more adhesive than the wildtype. These results suggest that an authentic beta2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.  相似文献   

16.
The dopamine transporter (DAT) mediates reuptake of released dopamine and is the target for psychostimulants, such as cocaine and amphetamine. DAT undergoes marked constitutive endocytosis, but little is known about the fate and sorting of the endocytosed transporter. To study DAT sorting in cells lines, we fused the one-transmembrane segment protein Tac to DAT, thereby generating a transporter (TacDAT) with an extracellular antibody epitope suited for trafficking studies. TacDAT was functional and endocytosed constitutively in HEK293 cells. According to an ELISA-based assay, TacDAT intracellular accumulation was increased by the lysosomal protease inhibitor leupeptin and by monensin, an inhibitor of lysosomal degradation and recycling. Monensin also reduced TacDAT surface expression consistent with partial recycling. In both HEK293 cells and in the dopaminergic cell line 1Rb3An27, constitutively internalized TacDAT displayed primary co-localization with the late endosomal marker Rab7, less co-localization with the “short loop” recycling marker Rab4, and little co-localization with the marker of “long loop” recycling endosomes, Rab11. Removal by mutation of N-terminal ubiquitination sites did not affect this sorting pattern. The sorting pattern was distinct from a bona fide recycling membrane protein, the β2-adrenergic receptor, that co-localized primarily with Rab11 and Rab4. Constitutively internalized wild type DAT probed with the fluorescently tagged cocaine analogue JHC 1-64, exhibited the same co-localization pattern as TacDAT in 1Rb3An27 cells and in cultured midbrain dopaminergic neurons. We conclude that DAT is constitutively internalized and sorted in a ubiquitination-independent manner to late endosomes/lysosomes and in part to a Rab4 positive short loop recycling pathway.  相似文献   

17.
The beta2ARs (beta(2)-adrenergic receptors) undergo ligand-induced internalization into early endosomes, but then are rapidly and efficiently recycled back to the plasma membrane, restoring the numbers of functional cell-surface receptors. Gathering evidence suggests that, during prolonged exposure to agonist, some beta2ARs also utilize a slow recycling pathway through the perinuclear recycling endosomal compartment regulated by the small GTPase Rab11. In the present study, we demonstrate by co-immunoprecipitation studies that there is a beta2AR-Rab11 association in HEK-293 cells (human embryonic kidney cells). We show using purified His(6)-tagged Rab11 protein and beta2AR intracellular domains fused to GST (glutathione transferase) that Rab11 interacts directly with the C-terminal tail of beta2AR, but not with the other intracellular domains of the receptor. Pull-down and immunoprecipitation assays revealed that the beta2AR interacts preferentially with the GDP-bound form of Rab11. Arg(333) and Lys(348) in the C-terminal tail of the beta2AR were identified as crucial determinants for Rab11 binding. A beta2AR construct with these two residues mutated to alanine, beta2AR RK/AA (R333A/K348A), was generated. Analysis of cell-surface receptors by ELISA revealed that the recycling of beta2AR RK/AA was drastically reduced when compared with wild-type beta2AR after agonist washout, following prolonged receptor stimulation. Confocal microscopy demonstrated that the beta2AR RK/AA mutant failed to co-localize with Rab11 and recycle to the plasma membrane, in contrast with the wild-type receptor. To our knowledge, the present study is the first report of a direct interaction between the beta2AR and a Rab GTPase, which is required for the accurate intracellular trafficking of the receptor.  相似文献   

18.
During cell migration, integrins are redistributed from focal adhesions undergoing disassembly at the cell's trailing edges to new focal adhesions assembling at leading edges. The initial step of integrin redistribution is thought to require clathrin-mediated endocytosis. However, whether clathrin-mediated endocytosis functions in different contexts, such as basal versus stimulated migration, has not been determined. In this paper, we examine the spatial and temporal redistribution of integrins from focal adhesions upon stimulation by growth factors. Four-dimensional confocal live-cell imaging along with functional analysis reveals that surface integrins do not undergo significant endocytosis at ventral focal adhesions upon cell stimulation with the platelet-derived growth factor. Rather, they abruptly redistribute to dorsal circular ruffles, where they are internalized through macropinocytosis. The internalized integrins then transit through recycling endosomal compartments to repopulate newly formed focal adhesions on the ventral surface. These findings explain why integrins have long been observed to redistribute through both surface-based and internal routes and identify a new function for macropinocytosis during growth factor-induced cell migration.  相似文献   

19.
Rab10, a protein originally isolated from Madin-Darby Canine Kidney (MDCK) epithelial cells, belongs to a family of Rab proteins that includes Rab8 and Rab13. Although both Rab8 and Rab13 have been found to mediate polarized membrane transport, the function of Rab10 in mammalian cells has not yet been established. We have used quantitative confocal microscopy of polarized MDCK cells expressing GFP chimeras of wild-type and mutant forms of Rab10 to analyze the function of Rab10 in polarized cells. These studies demonstrate that Rab10 is specifically associated with the common endosomes of MDCK cells, accessible to endocytic probes internalized from either the apical or basolateral plasma membrane domains. Expression of mutant Rab10 defective for either GTP hydrolysis or GTP binding increased recycling from early compartments on the basolateral endocytic pathway without affecting recycling from later compartments or the apical recycling pathway. These results suggest that Rab10 mediates transport from basolateral sorting endosomes to common endosomes.  相似文献   

20.
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20 degrees C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号