共查询到20条相似文献,搜索用时 15 毫秒
1.
《Hormones and behavior》2012,61(5):617-624
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by dopamine neuron loss in the nigrostriatal pathway that shows greater incidence in men than women. The mechanisms underlying this gender bias remain elusive, although one possibility is that androgens may increase dopamine neuronal vulnerability to oxidative stress. Motor impairment can be modeled in rats receiving a unilateral injection of 6-hydroxydopamine (6-OHDA), a neurotoxin producing nigrostriatal degeneration. To investigate the role of androgens in PD, we compared young (2 months) and aged (24 months) male rats receiving gonadectomy (GDX) and their corresponding intact controls. One month after GDX, rats were unilaterally injected with 6-OHDA, and their motor impairment and asymmetry were assessed 2 weeks later using the cylinder test and the amphetamine-induced rotation test. Plasma samples were also collected to assess the concentration of testosterone and advanced oxidation protein products, a product of oxidative stress. GDX decreased lesion-induced asymmetry along with oxidative stress and increased amphetamine-induced rotations. These results show that GDX improves motor behaviors by decreasing motor asymmetry in 6-OHDA-treated rats, an effect that may be ascribed to increased release of striatal dopamine and decreased oxidative stress. Collectively, the data support the hypothesis that androgens may underlie the gender bias observed in PD. 相似文献
2.
L-DOPA does not enhance hydroxyl radical formation in the nigrostriatal dopamine system of rats with a unilateral 6-hydroxydopamine lesion 总被引:4,自引:0,他引:4
The debate about the toxicity of L-DOPA to dopaminergic neurons has not been resolved. Even though enzymatic and nonenzymatic metabolism of L-DOPA can produce hydrogen peroxide and oxygen free radicals, there has been controversy as to whether L-DOPA generates an oxidant stress in vivo. This study determined whether acute or repeated administration of L-DOPA caused in vivo production of hydroxyl radicals in striatum and other brain regions in rats with a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal projections. Salicylate trapping combined with in vivo microdialysis provided measurements of extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA) in striatum following L-DOPA administration systemically (100 mg/kg, i.p.) or by intrastriatal perfusion (1 mM, via the microdialysis probe). Tissue concentrations of 2,3-DHBA and salicylate were also measured in striatum, ventral midbrain, and cerebellum following repeated administration of L-DOPA (50 mg/kg, i.p., once daily for 16 days). In each instance, treatment with L-DOPA did not increase 2,3-DHBA concentrations, regardless of the nigrostriatal dopamine system's integrity. When added to the microdialysis perfusion medium, L-DOPA resulted in a significant decrease in the striatal extracellular concentration of 2,3-DHBA. These results suggest that administration of L-DOPA, even at high doses, does not induce hydroxyl radical formation in vivo and under some conditions may actually diminish hydroxyl radical activity. Furthermore, prior damage to the nigrostriatal dopamine system does not appear to predispose surviving dopaminergic neurons to increased hydroxyl radical formation following L-DOPA administration. Unlike L-DOPA, systemic administration of methamphetamine (10 mg/kg, s.c.) produced a significant increase in the concentration of 2,3-DHBA in striatal dialysate, suggesting that increased formation of hydroxyl radicals may contribute to methamphetamine neurotoxicity. 相似文献
3.
Two groups of weanling rats were subjected to malnutrition, one with periodic injections of testosterone (males) and the other with estradiol (females). Two other groups (castrated males or castrated females) received normal feedings. In control animals, the relative weights (mg/gm body weight) of testes, seminal vesicles, and ovaries were greater than in malnourished rats. However, relative weights of those organs in hormone-treated, malnourished animals were greater than in those subjected to malnutrition alone and still greater than in controls. Normal sexual cranial dimorphism (SCD) was decreased 16% by male castration, 23% by malnutrition, and 83% by estradiol treatment in malnourished females. On the other hand, normal SCD was increased 20% by female castration and more than 200% by testosterone treatment in malnourished males. All monosexual comparisons corroborated the bisexual range of distances found. Testicular but not ovarian secretions seemed to influence sexual cranial dimorphism. Malnutrition delayed SCD because of a deficiency of testosterone level in stressed males. It is suggested that estradiol in females may counteract sexual cranial development and that its inhibitory effect may be additive to the testosterone deficit evoked by malnutrition. 相似文献
4.
Atsushi Takeda Jinko Sawashita Sachiyo Takefuta Shoji Okada 《Biological trace element research》1998,61(1):71-78
To study the relationship between tissue accumulation of Zinc (Zn) and neurodegeneration in the nigrostriatal dopaminergic
pathway,65Zn distribution in this pathway was examined after unilateral injection of 6-hydroxydopamine (6-OHDA) into the substantia
nigra of rats. When65ZnCl2 was intravenously injected 4 days after treatment with 6-OHDA,65Zn was concentrated in the ipsilateral substantia nigra 6 days after65Zn injection. On the other hand, 19 d after treatment with 6-OHDA,65Zn distribution in the ipsilateral substantia nigra was decreased to the level of the contralateral one. When NH4
99TcO4, which cannot go through the blood-brain barrier, was injected into rats 4 d after treatment with 6-OHDA,99Tc was concentrated in the ipsilateral substantia nigra 30 min after99Tc injection, but no longer detectable 6 d after injection. These results suggest that Zn is necessary for a repair process
called replacement gliosis after the death of neurons and that excess Zn does not accumulate in the lesion after completion
of the gliosis. 相似文献
5.
Budni P de Lima MN Polydoro M Moreira JC Schroder N Dal-Pizzol F 《Neurochemical research》2007,32(6):965-972
Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated
that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have
shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in
adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase
B (MAO-B) inhibitor used in pharmacotherapy of Parkinson’s disease, against iron-induced oxidative stress in the brain. Results
have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra
as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg)
was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra. 相似文献
6.
7.
R. Anandan B. Ganesan T. Obulesu S. Mathew K. K. Asha P. T. Lakshmanan A. A. Zynudheen 《Cell stress & chaperones》2013,18(1):121-125
Aging has been defined as the changes that occur in living organisms with the passage of time that lead to functional impairment and ultimately to death. Free radical-induced oxidative damage has long been thought to be the most important consequence of the aging process. In the present study, an attempt has been made to study the salubrious effects of dietary supplementation of chitosan on glutathione-dependent antioxidant defense system in young and aged rats. The dietary supplementation of chitosan significantly reduced the age-associated dyslipidemic abnormalities noted in the levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol in plasma and heart tissue. Its administration significantly (P < 0.05) attenuated the oxidative stress in the heart tissue of aged rats through the counteraction of free radical formation by maintaining the enzymatic [glutathione peroxidase (GPx) and glutathione reductase (GR)] and non-enzymatic [reduced glutathione (GSH)] status at levels comparable to that of normal young rats. Our results conclude that dietary intake of chitosan restores the depleted myocardial antioxidant status and suggest that it could be an effective therapeutic agent in treatment of age-associated disorders where hypercholesterolemia and oxidative stress are the major causative factors. 相似文献
8.
José L. Venero Mati Revuelta Josefina Cano Alberto Machado 《Journal of neurochemistry》1997,68(6):2458-2468
Abstract: We studied the time course of oxidatively modified proteins in the nigrostriatal dopaminergic system following transection of the medial forebrain bundle by quantifying the number of carbonyl groups coupled to striatal and nigral protein homogenates, an index of metal-catalyzed oxidations. We found a striking effect of axotomy on the number of oxidatively modified proteins in the substantia nigra but not in the striatum within the first 5 days postlesion. This effect was correlated with the neurochemical activity of the dopaminergic and serotoninergic systems in the substantia nigra, which suggests a role of dopamine- and serotonin-derived radical oxygen species in the oxidative stress detected in this brain area. We then searched for the type of cell death in the substantia nigra following axotomy. The fragmentation pattern obtained by agarose gel electrophoresis of DNA isolated from nigral tissue was indicative of cell death being entirely necrotic. In fact, no evidence of apoptosis was detected at any postlesion time as revealed by TdT-mediated dUTP-biotin nick end-labeling (TUNEL) staining. The course of necrotic cell death in the substantia nigra coincided with the maximal levels of oxidatively modified proteins in the substantia nigra, suggesting a link between oxidative stress and nerve cell death and also coinciding with the neurochemical activity of both dopaminergic and serotoninergic systems. 相似文献
9.
Inden M Kitamura Y Kondo J Hayashi K Yanagida T Takata K Tsuchiya D Yanagisawa D Nishimura K Taniguchi T Shimohama S Sugimoto H Akaike A 《Journal of neurochemistry》2005,95(4):950-961
Serofendic acid was recently identified as a neuroprotective factor from fetal calf serum. This study was designed to evaluate the neuroprotective effects of an intranigral microinjection of serofendic acid based on behavioral, neurochemical and histochemical studies in hemi-parkinsonian rats using 6-hydroxydopamine (6-OHDA). Rats were injected with 6-OHDA in the presence or absence of serofendic acid, or were treated with serofendic acid on the same lateral side, at 12, 24 or 72 h after 6-OHDA lesion. Intranigral injection of 6-OHDA alone induced a massive loss of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra pars compacta (SNpc). Either simultaneous or 12 h post-administration of serofendic acid significantly prevented both dopaminergic neurodegeneration and drug-induced rotational asymmetry. Immunoreactivities for oxidative stress markers, such as 3-nitrotyrosine (3-NT) and 4-hydroxy-2-nonenal (4-HNE), were markedly detected in the SNpc of rats injected with 6-OHDA alone. These immunoreactivities were markedly suppressed by the co-administration of serofendic acid, similar to the results in vehicle-treated control rats. In addition, serofendic acid inhibited 6-OHDA-induced alpha-synuclein expression and glial activation in the SNpc. These results suggest that serofendic acid protects against 6-OHDA-induced SNpc dopaminergic neurodegeneration in a rat model of Parkinson's disease. 相似文献
10.
Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats 总被引:1,自引:0,他引:1
Retana-Márquez S Bonilla-Jaime H Vázquez-Palacios G Martínez-García R Velázquez-Moctezuma J 《Hormones and behavior》2003,44(4):327-337
Chronic exposure to stressors increases HPA axis activity and concomitantly reduces HPG axis activity. This antagonistic relationship between both these axes has been proposed to underlie the inhibition of reproductive function due to stress. Sexual behavior in males may be the most vulnerable aspect of male reproduction to acute and chronic stress and it has been suggested that alterations in sexual behavior during stress are due to the antagonistic relationship between testosterone and corticosteroids. However, only in a few studies has a correlation between the levels of testosterone and corticosterone, and sexual behavior been made. In this study, we evaluated the effects of different stressors, applied both acute and chronically, on masculine sexual behavior and whether or not these effects on sexual behavior are accompanied by changes in plasma levels of corticosterone and testosterone. Additionally, we evaluated the effect of testosterone treatment on the effects of stress on sexual behavior. Sexually experienced male rats were exposed to one of the following stressors: immobilization (IMB), electric foot shocks (EFS) or immersion in cold water (ICW). Sexual behavior and plasma levels of testosterone and corticosterone were assessed on days 1, 5, 10, 15, and 20 of stress. In a second experiment, males were castrated, treated with 3 different doses of testosterone propionate (TP) and exposed to ICW for 20 consecutive days. Sexual behavior was assessed on days 1, 5, 10, 15, and 20 and steroids were evaluated on day 20. Parameters of masculine sexual behavior were modified depending on the characteristics of each stressor. Mount, intromission and ejaculation latencies increased significantly, the number of mounts increased, and ejaculations decreased significantly in males exposed to EFS and to ICW but not in males exposed to IMB. Associated with these effects, testosterone decreased in the EFS and ICW groups on days 1, 15, and 20. However, corticosterone increased only in males exposed to ICW. In castrated males, TP treatment failed to block the effects of stress by ICW on sexual behavior and corticosterone. These results indicate that the effects of stress on sexual behavior depend on the characteristics of each stressor, and these effects, as well as the decrease in testosterone are not necessarily associated with the increase in corticosterone. The fact that testosterone treatment did not prevent the effects of stress on sexual behavior suggests that other mediators could be involved in the alterations of sexual behavior caused by stress. 相似文献
11.
Thermoregulatory and motor activity circadian cycles are age-dependent. While the level of thermoregulation and motor activity remained almost at the same level during the first 1-15 months during the light portion of the 24-hr cycle, a significant decrease in the level of both rhythms was observed during the dark period. Therefore, older rats exhibited reversed cycles compared with younger rats. Treatments with d-amphetamine resulted in the enhancement of reversal of the cycles. Rats treated with alpha-MSH failed to exhibit a reversal of the cycles. While the effects of d-amphetamine are mediated by the brain DA mesolimbic pathway, it seems that alpha-MSH acts on the dopaminergic system at different sites of action. 相似文献
12.
Effect of testosterone on oxidative stress and cell damage induced by 3-nitropropionic acid in striatum of ovariectomized rats 总被引:4,自引:0,他引:4
Túnez I Feijóo M Collado JA Medina FJ Peña J Muñoz Mdel C Jimena I Franco F Rueda I Muntané J Montilla P 《Life sciences》2007,80(13):1221-1227
This paper evaluates the effects of testosterone (0.5 mg/kg subcutaneously (s.c.) for 8 days) on oxidative stress and cell damage induced by 3-nitropropionic acid (20 mg/kg intraperitoneally (i.p.) for 4 days) in ovariectomized rats. Gonadectomy triggered oxidative damage and cell loss, evaluated by the detection of caspase-3, whereas 3-nitropropionic acid increased the levels of oxidative stress induced by ovariectomy and prompted cell damage characterized by enhanced levels of lactate dehydrogenase. These changes were blocked by testosterone administration. Our results support the following conclusions: i) ovariectomy triggers oxidative and cell damage via caspase-3 in the striatum; ii) 3-nitropropionic acid exacerbates oxidative stress induced by ovariectomy and leads to cell damage characterized by increased levels of lactate dehydrogenase; iii) testosterone administration decreases oxidative stress and cell damage. Additionally, these data support the hypothesis that testosterone might play an important role in the onset and development of neurodegenerative diseases. 相似文献
13.
Moriarty SE Shah JH Lynn M Jiang S Openo K Jones DP Sternberg P 《Free radical biology & medicine》2003,35(12):1582-1588
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking. 相似文献
14.
《Saudi Journal of Biological Sciences》2023,30(9):103745
Nanoparticles are beneficial in many aspects to human life but their excessive use can cause various abnormalities. They dispose in the environment through transport, industrial and agricultural usage and enter in living body through dermal, respiratory route or ingested with the lipsticks and there higher concentration produces toxicity. Therefore, current study characterized ZnO-NPs to evaluate toxic ability by X-rays diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques and showed 29.83 and 35 nm size, respectively with hexagonal crystalline structure. LC50 value of ZnO-NPs was also evaluated as 72.48 ± 10.33 mg/kg BW. Male Sprague Dawley (Post weaning) rats were divided into five groups with five rats in each group. Control (C) group received no treatment, placebo (S) group received normal saline (0.9% sodium chloride) intraperitoneally and three treated groups received different levels of ZnO- NPs intraperitoneally at the dose of either 10 or 20 or 30 mg/kg for 21 days on alternate days and named as 1G1, 1G2 and 1G3, respectively for the assessment of toxicity for better understanding of precautionary measures in future. Oxidative stress enzymes of liver and kidney, hepatorenal function enzymes and hematological parameters along with hepatic histology were measured at the end of the experiment. Results showed highly significant variations in all parameters in a dose dependent manner as compared to control group while groups receiving 10 or 20 mg/kg of ZnO-NPs showed low to moderate pathological changes in both organs. Liver histological analysis showed congestion, necrosis, hemorrhage, RBC’s accumulations; inflammatory cells infiltration and severe abnormalities in high dose group while medium, low dose group showed moderate and least effects, respectively. It is concluded that ZnO-NPs are highly toxic at more concentration so their careful usage is needed in daily routine. 相似文献
15.
Neuromuscular transmission is decreased in aged subject. Since endogenous adenosine is a potent neuromodulator at motor nerve endings, either inhibiting via A1 receptors or facilitating via A2A receptors acetylcholine release, we now investigated if the tonic effect of endogenous adenosine was modified at phrenic nerve endings of aged rats. The A2A receptor antagonist (ZM241385, 50 nM) inhibited (77 ± 9%) and the A1 receptor antagonist (DPCPX, 50 nM) facilitated (74 ± 13%) acetylcholine release from young adult (6 weeks old) rat preparations, indicating a simultaneous tonic activation of A2A and A1 receptors. Tonic modulation by adenosine was unaltered in aged (24 months old) rats, since ZM241385 (50 nM) inhibited (73 ± 8%) and DPCPX (50 nM) facilitated (91 ± 20%) acetylcholine release in aged animals similarly to young rats. This indicates that, in contrast to the central nervous system where adenosine neuromodulation is modified in aged animals, the control by adenosine of phrenic nerve function is preserved in aged animals 相似文献
16.
Beta-cypermethrin impairs reproductive function in male mice by inducing oxidative stress 总被引:2,自引:0,他引:2
Cypermethrin (CYP), an insecticide, has deleterious effects on male reproductive function. The objective was to identify whether the effects of beta-CYP on male reproductive organs were associated with oxidative stress. Three doses of beta-CYP (1, 10, and 20 mg/kg) were administered to male mice for 35 d, with or without vitamin E (20 mg/kg). The moderate (10 mg/kg) and high (20 mg/kg) doses of beta-CYP not only decreased body weight and the weight of the testes, epididymides, seminal vesicles, and prostate (P < 0.05) but also reduced serum testosterone concentration and the expression of steroidogenic acute regulatory protein (P < 0.05), in addition to damaging the seminiferous tubules and sperm development. Furthermore, moderate and high doses of beta-CYP administration decreased sperm number, sperm motility, and intact acrosome rate (P < 0.05). Based on ultrastructural analyses, high doses of beta-CYP produced swelling and degeneration of mitochondria and the smooth endoplasmic reticulum of Leydig cells and caused the formation of concentric circles. These toxic effects of beta-CYP may be mediated by increasing oxidative stress, as the moderate and high doses of this compound increased malondialdehyde and nitric oxide in testes (P < 0.05); reduced the activity of catalase, glutathione peroxidase (GSH-Px), and superoxide dismutase (P < 0.05); and activated ERK1/2 (P < 0.05). Vitamin E reversed the effects of beta-CYP on testosterone production and testis damage (P < 0.05 vs. the high-dose group). Therefore, we inferred that beta-CYP damaged the structure of testes and decreased sperm output by inducing oxidative stress. 相似文献
17.
Dal-Ros S Zoll J Lang AL Auger C Keller N Bronner C Geny B Schini-Kerth VB 《Biochemical and biophysical research communications》2011,(2):743-749
Aging is associated with oxidative stress-mediated endothelial dysfunction and decline in physical performance, which promote cardiovascular diseases. This study examined whether chronic intake of red wine polyphenols (RWPs), a rich source of natural antioxidants, prevents aging-related impairment of vascular function and physical exercise capacity. Vascular reactivity from 12, 20 and 40 week-old rats was assessed in organ chambers. Rats received from week 16 to 40 either solvent, RWPs or the antioxidant and NADPH oxidase inhibitor, apocynin. Aging was associated with blunted endothelium-dependent relaxations, oxidative stress (dihydroethidine staining), and an upregulation of eNOS, arginase I, NADPH oxidase p22phox and nox1 subunits, and AT1 and AT2 receptors (assessed by immunohistochemistry) in the mesenteric artery. RWPs and apocynin improved the endothelial dysfunction, normalized oxidative stress and the expression of the different proteins. RWPs also improved aging-related decline in physical exercise. Thus, intake of RWPs protects against aging-induced endothelial dysfunction and decline in physical performance. These effects likely involve the ability of RWPs to normalize oxidative stress and the expression of proteins involved in the formation of NO and the angiotensin II pathway. 相似文献
18.
19.
《Electromagnetic biology and medicine》2013,32(4):527-535
Studies have sought to assess various potential neuroprotective therapeutics in Parkinson's disease. The aim of this study was to evaluate the effects of static magnetic field stimulation 14 days after a 6-Hydroxydopamine (6-OHDA) substantia nigra compacta (SNc) lesion on motor behavior, as assessed by the rotarod (RR) test and brain tissue morphology. Forty male Wistar rats were used and were divided into five groups: control group, sham group (SG), lesion group (LG), lesion north pole group (LNPG) and lesion south pole group (LSPG). In groups with magnetic stimulation, a 3200-gauss magnet was fixed to the skull. After the experiments, the animals were anesthetized for brain perfusion. Coronal sections of the SNc were stained with Nissl. The RR test showed a decrease in the time spent on the apparatus in the LG compared with all groups. The LNPG and LSPG had significant increases in the time spent when compared to the LG. A morphometric analysis revealed a significant reduction in the number of neurons in the LG, LNPG and LSPG in relation to the SG. There were a higher number of neurons in the LNPG and LSPG than the LG, and a higher number of neurons in the LSPG than the LNPG. We observed that the LG, LNPG and LSPG showed a higher number of glial cells than the SG, and the LNPG and LSPG showed a lower number of glial cells than the LG. Our results demonstrate a potential therapeutic use of static magnetic fields for the preservation of motor behavior and brain morphology in the SNc after 14 days with 6-OHDA lesion. 相似文献
20.
C. Pérez-Laso E. Ortega J.L.R. Martín M.A. Pérez-Izquierdo F. Gómez S. Segovia M.C.R. Del Cerro 《Hormones and behavior》2013
The present study analyzes the interaction between prenatal stress and mother's behavior on brain, hormonal, and behavioral development of male offspring in rats. It extends to males our previous findings, in females, that maternal care can alter behavioral dimorphism that becomes evident in the neonates when they mature. Experiment 1 compares the maternal behavior of foster mothers toward cross-fostered pups versus mothers rearing their own litters. Experiment 2 ascertains the induced “maternal” behavior of the male pups, derived from Experiment 1 when they reached maturity. The most striking effect was that the males non-exposed to the stress as fetuses and raised by stressed foster mothers showed the highest levels of “maternal” behavior of all the groups (i.e., induction of maternal behavior and retrieving behavior), not differing from the control, unstressed, female groups. Furthermore, those males showed significantly fewer olfactory bulb mitral cells than the control males that were non-stressed as fetuses and raised by their own non-stressed mothers. They also presented the lowest levels of plasma testosterone of all the male groups. 相似文献