首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Oliveira MT  Kaguni LS 《PloS one》2010,5(10):e15379
Biochemical studies of the mitochondrial DNA (mtDNA) replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB). Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence) are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold). Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries.  相似文献   

4.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   

5.
The primary structure of the single-stranded DNA binding protein from Xenopus laevis oocyte mitochondria (mtSSB) has been determined by Edman degradation of the intact molecule and peptides derived from partial alpha-chymotrypsin proteolysis and enzymatic cleavage with trypsin and endoproteinase Glu-C. The native mtSSB is composed of two related polypeptide chains, mtSSBs and mtSSBr. The sequence of mtSSBs consists of 129 amino acids with a calculated molecular mass of 14,627 Da. Comparison of the first 80 residues of the two chains reveals 91% identity. A high degree of similarity is found between mtSSB and Escherichia coli SSB or F sex factor SSB.  相似文献   

6.
Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redβ recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination.  相似文献   

7.
8.
Replication of chloroplast DNA (ctDNA) in several plants and in Chlamydomonas reinhardii has been shown to occur by a double displacement loop (D-loop) mechanism and potentially also by a rolling circle mechanism. D-loop replication origins have been mapped in several species. Minimal replication origin sequences used as probes identified two potential binding proteins by southwestern blot analysis. A 28 kDa (apparent molecular weight by SDS-PAGE analysis) soybean protein has been isolated by origin sequence-specific DNA affinity chromatography from total chloroplast proteins. Mass spectrometry analysis identified this protein as the product of the soybean C6SY33 gene (accession number ACU14156), which is annotated as encoding a putative uncharacterized protein with a molecular weight of 25,897 Da, very near the observed molecular weight of the purified protein based on gel electrophoresis. Western blot analysis using an antibody against a homologous Arabidopsis protein indicates that this soybean protein is localized specifically in chloroplasts. The soybean protein shares some homology within a single-stranded DNA binding (SSB) domain of E. coli SSB and an Arabidopsis thaliana mitochondrial-localized SSB of about 21 kDa (mtSSB). However, the soybean protein induces a specific electrophoretic mobility shift only when incubated with a double-stranded fragment containing the previously mapped ctDNA replication oriA region. This protein has no electrophoretic mobility shift activity when incubated with single-stranded DNA. In contrast, the Arabidopsis mtSSB causes a mobility shift only with single-stranded DNA but not with the oriA fragment or with control dsDNA of unrelated sequence. These results suggest that the 26 kDa soybean protein is a specific origin binding protein that may be involved in initiation of ctDNA replication.  相似文献   

9.
Overexpression of the asnA gene from Escherichia coli K-12 coding for asparagine synthetase (EC 6.3.1.1) was achieved with a plasmid, pUNAd37, a derivative of pUCI8, in E. coli. The plasmid was constructed by optimizing a DNA sequence between the promoter and the ribosome binding region. The enzyme, comprising ca. 15%, of the total soluble protein in the E. coli cell, was readily purified to apparent homogeneity by DEAE-Cellulofine and Blue-Cellulofine column chromatographies. The amino-terminal sequence, amino acid composition, and molecular weight of the purified protein agreed with the predicted values based on the DNA sequence of the gene. Furthermore the native molecular weight measured by gel filtration confirmed that asparagine synthetase exists as a dimer of identical subunits.  相似文献   

10.
Rolling circle amplification (RCA) of plasmid or genomic DNA using random hexamers and bacteriophage phi29 DNA polymerase has become increasingly popular in the amplification of template DNA in DNA sequencing. We have found that the mutant protein of single-stranded DNA binding protein (SSB) from Thermus thermophilus (Tth) HB8 enhances the efficiency of amplification of DNA templates. In addition, the TthSSB mutant protein increased the specificity of phi29 DNA polymerase. We have overexpressed the native and mutant forms of TthSSB protein in Escherichia coli and purified them to homogeneity. In vitro, these proteins were found to bind specifically to single-stranded DNA. Addition of TthSSB mutant protein to RCA halved the elongation time required for phi29 DNA polymerase to synthesize DNA fragments in RCA. Furthermore, the presence of the TthSSB mutant protein essentially eliminates nonspecific DNA products in RCA reactions.  相似文献   

11.
Mannheimia haemolytica leukotoxin (LktA) is a member of the RTX toxin family that specifically kills ruminant leukocytes. Previous studies have shown that LktA induces apoptosis in susceptible cells via a caspase‐9‐dependent pathway that involves binding of LktA to mitochondria. In this study, using the bioinformatics tool MitoProt II we identified an N‐terminal amino acid sequence of LktA that represents a mitochondrial targeting signal (MTS). We show that expression of this sequence, as a GFP fusion protein within mammalian cells, directs GFP to mitochondria. By immunoprecipitation we demonstrate that LktA interacts with the Tom22 and Tom40 components of the translocase of the outer mitochondrial membrane (TOM), which suggests that import of this toxin into mitochondria involves a classical import pathway for endogenous proteins. We also analysed the amino acid sequences of other RTX toxins and found a MTS in the N‐terminal region of Actinobacillus pleuropneumoniae ApxII and enterohaemorrhagicEscherichia coli EhxA, but not in A. pleuropneumoniae ApxI, ApxIII, Aggregatibacter actinomycetemcomitans LtxA or the haemolysin (HlyA) from uropathogenic strains of E. coli. These findings provide a new evidence for the importance of the N‐terminal region in addressing certain RTX toxins to mitochondria.  相似文献   

12.
RecA protein is widespread in bacteria, and it plays a crucial role in homologous recombination. We have identified two bacterial-type recA gene homologs (PprecA1, PprecA2) in the cDNA library of the moss Physcomitrella patens. N-terminal fusion of the putative organellar targeting sequence of PpRecA2 to the green fluorescent protein (GFP) caused a targeting of PpRecA2 to the chloroplasts. Mutational analysis showed that the first AUG codon acts as initiation codon. Fusion of the full-length PpRecA2 to GFP caused the formation of foci that were colocalized with chloroplast nucleoids. The amounts of PprecA2 mRNA and protein in the cells were increased by treatment with DNA damaging agents. PprecA2 partially complemented the recA mutation in Escherichia coli. These results suggest the involvement of PpRecA2 in the repair of chloroplast DNA.  相似文献   

13.
We report the identification and characterization of the single-stranded DNA-binding protein (SSB) from the mesophile and highly radiation-resistant Deinococcus radiopugnans (DrpSSB). PCR-derived DNA fragment containing the complete structural gene for DrpSSB protein was cloned and expressed in Escherichia coli. The gene consisting of an open reading frame of 900 nucleotides encodes a protein of 300 amino acids with a calculated molecular weight of 32.45 kDa and pI 5.34. The amino acids sequence exhibits 43, 44, 79 and 18% identity with Thermus aquaticus, Thermus thermophilus, Deinococcus radiodurans and E. coli SSBs, respectively. The DrpSSB includes two OB folds per monomer and functions as a homodimer. In fluorescence titrations with poly(dT), DrpSSB bound 24–31 nt depending on the salt concentration, and fluorescence was quenched by about 80%. In a complementation assay in E. coli, DrpSSB took over the in vivo function of EcoSSB. The half-lives of DrpSSB were 120 min at 90°C, 60 min at 95°C and 30 min at 100°C. These results were surprising in the context of half-life of SSB from thermophilic T. aquaticus, which has only 30 s of half-life at 95°C. DrpSSB is the most thermostable SSB-like protein identified to date, offering an attractive alternative for TaqSSB and TthSSB in their applications for molecular biology methods and analytical purposes.  相似文献   

14.
Summary Induction of the SOS response in Escherichia coli results in an increase in the relative rate of synthesis of single-stranded DNA binding protein (SSB). In contrast to RecA protein, this increase is slow and does not lead to higher SSB levels. The significance of ssb induction to SOS repair is discussed.  相似文献   

15.

Background

Deinococcus radiodurans R1 is one of the most radiation-resistant organisms known and is able to repair an unusually large amount of DNA damage without induced mutation. Single-stranded DNA-binding (SSB) protein is an essential protein in all organisms and is involved in DNA replication, recombination and repair. The published genomic sequence from Deinococcus radiodurans includes a putative single-stranded DNA-binding protein gene (ssb; DR0100) requiring a translational frameshift for synthesis of a complete SSB protein. The apparently tripartite gene has inspired considerable speculation in the literature about potentially novel frameshifting or RNA editing mechanisms. Immediately upstream of the ssb gene is another gene (DR0099) given an ssb-like annotation, but left unexplored.

Results

A segment of the Deinococcus radiodurans strain R1 genome encompassing the ssb gene has been re-sequenced, and two errors involving omitted guanine nucleotides have been documented. The corrected sequence incorporates both of the open reading frames designated DR0099 and DR0100 into one contiguous ssb open reading frame (ORF). The corrected gene requires no translational frameshifts and contains two predicted oligonucleotide/oligosaccharide-binding (OB) folds. The protein has been purified and its sequence is closely related to the Thermus thermophilus and Thermus aquaticus SSB proteins. Like the Thermus SSB proteins, the SSBDr functions as a homodimer. The Deinococcus radiodurans SSB homodimer stimulates Deinococcus radiodurans RecA protein and Escherichia coli RecA protein-promoted DNA three-strand exchange reactions with at least the same efficiency as the Escherichia coli SSB homotetramer.

Conclusions

The correct Deinococcus radiodurans ssb gene is a contiguous open reading frame that codes for the largest bacterial SSB monomer identified to date. The Deinococcus radiodurans SSB protein includes two OB folds per monomer and functions as a homodimer. The Deinococcus radiodurans SSB protein efficiently stimulates Deinococcus radiodurans RecA and also Escherichia coli RecA protein-promoted DNA strand exchange reactions. The identification and purification of Deinococcus radiodurans SSB protein not only allows for greater understanding of the SSB protein family but provides an essential yet previously missing player in the current efforts to understand the extraordinary DNA repair capacity of Deinococcus radiodurans.
  相似文献   

16.
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism, such as in DNA replication, repair, and recombination, and is essential for cell survival. We characterized the single-stranded DNA (ssDNA)-binding properties of Pseudomonas aeruginosa PAO1 SSB (PaSSB) by using fluorescence quenching measurements and electrophoretic mobility shift analysis (EMSA). Analysis of purified PaSSB by gel filtration chromatography revealed a stable tetramer in solution. In fluorescence titrations, PaSSB bound 22–32 nucleotides (nt) per tetramer depending on salt concentration. Using EMSA, we characterized the stoichiometry of PaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined to be 29 ± 1 nt. Furthermore, EMSA results indicated that the dissociation constants of PaSSB for the first tetramer were less than those for the second tetramer. On the basis of these biophysical analyses, the ssDNA binding mode of PaSSB is expected to be noncooperative.  相似文献   

17.
Mitochondrial DNA (mtDNA) encodes for proteins required for oxidative phosphorylation, and mutations affecting the genome have been linked to a number of diseases as well as the natural ageing process in mammals. Human mtDNA is replicated by a molecular machinery that is distinct from the nuclear replisome, but there is still no consensus on the exact mode of mtDNA replication. We here demonstrate that the mitochondrial single-stranded DNA binding protein (mtSSB) directs origin specific initiation of mtDNA replication. MtSSB covers the parental heavy strand, which is displaced during mtDNA replication. MtSSB blocks primer synthesis on the displaced strand and restricts initiation of light-strand mtDNA synthesis to the specific origin of light-strand DNA synthesis (OriL). The in vivo occupancy profile of mtSSB displays a distinct pattern, with the highest levels of mtSSB close to the mitochondrial control region and with a gradual decline towards OriL. The pattern correlates with the replication products expected for the strand displacement mode of mtDNA synthesis, lending strong in vivo support for this debated model for mitochondrial DNA replication.  相似文献   

18.
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism, such as DNA replication, repair, and recombination, and is essential for cell survival. We characterized the single-stranded DNA (ssDNA)-binding properties of Salmonella enterica serovar Typhimurium LT2 SSB (StSSB) by using fluorescence quenching measurements and electrophoretic mobility shift analysis (EMSA). Analysis of purified StSSB by gel filtration chromatography showed a stable tetramer in solution. In fluorescence titrations, StSSB bound to 21–38 nucleotides (nt) per tetramer depending on the salt concentration. Using EMSA, we characterized the stoichiometry of StSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined to be 22 ± 1 nt. Furthermore, EMSA results indicated that the dissociation constants of StSSB for the first tetramer were less than that for the second tetramer. On the basis of these biophysical analyses, the ssDNA binding-mode of StSSB is expected to be noncooperative.  相似文献   

19.
Here we report the cell surface display of organophosphorus hydrolase (OPH) and green fluorescent protein (GFP) fusion by employing the N- and C-terminal domains of ice nucleation protein (INPNC) as an anchoring motif. An E. coliPseudomonas shuttle vector, pNOG33, coding for INPNC–OPH–GFP was constructed for targeting the fusion onto the cell surface of p-nitrophenol (PNP)-degrading P. putida JS444. The surface localization of INPNC–OPH–GFP was verified by cell fractionation, Western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH–GFP was demonstrated by OPH assays and fluorescence measurements. Surface display of macromolecular OPH–GFP fusion (63 kDa) neither inhibited cell growth nor affected cell viability. These results suggest that INP is an useful tool for the presentation of heterologous proteins on cell surfaces of indigenous microbes. The engineered P. putida JS444 degraded organophosphates (OPs) as well as PNP rapidly and could be easily monitored by fluorescence. Parathion (100 mg kg−1) could be degraded completely within 15 days in soil inoculated with the engineered strain. These merits make this engineered strain an ideal biocatalyst for in situ bioremediation of OP-contaminated soil.  相似文献   

20.
 We have characterised a RecA protein fused to the simian virus 40 large T nuclear-localisation signal. The fusion protein was targeted to the nucleus in transgenic tobacco plants with high efficiency. By contrast, authentic RecA was not enriched in the nuclei of plant cells expressing comparable amounts of protein. For detailed characterisation of the strand-exchange activity of the nuclear-targeted RecA protein, a nearly identical protein was expressed in Escherichia coli and purified to homogeneity. This protein was found to bind to single-stranded DNA with the same stoichiometry and to promote the exchange of homologous DNA strands with the same kinetics as authentic RecA. It was concluded that the amino-terminal modification did not alter any of the essential properties of RecA and that the fusion protein is a fully functional strand-exchange protein. However, the ATPase activity of this protein was 20 times greater than that of RecA in the absence of single-stranded DNA. As with RecA, this activity was further stimulated by the addition of single-stranded DNA. Since ATPase activity is correlated with the ability of RecA to assume its high affinity state for DNA, the nuclear-targeted RecA protein might be regarded as a constitutively stimulated RecA variant, fully functional in promoting homologous recombination. Received: 29 July 1996 / Accepted: 24 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号