首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As semi-natural grassland has a high level of biological diversity, understanding the effects of grazing and its variation over time is important in order to identify sustainable grazing practices. We measured temporal variation in Orthoptera abundance and spatial vegetation structure during seasonal grazing in an extensive sheep-farming system. We studied five grazed pasture areas (pre-grazing and post-grazing) and two adjacent ungrazed grasslands. We recorded the total abundance of Orthoptera and described the vegetation structure of 175 replicate plots (25 per pasture/grassland) during six field sampling sessions. We demonstrated that the impact of grazing on Orthoptera abundance is species-specific and greatly varies over the grazing season. The decrease of phytovolume is significant after 4–7 weeks of sheep grazing. Total Orthoptera abundance was higher in pre-grazed plots than in ungrazed plots, and higher in ungrazed plots than in post-grazed plots. These differences were particularly high during the peak of adult abundance. No difference in species richness was observed between grazing intensities. Total Orthoptera abundance positively correlated to phytovolume only when grazing pressure was high. However, the relationship between abundance and phytovolume differed between species. Extensive grazing by sheep tends to homogenize spatial vegetation structure and to temporarily reduce total Orthoptera abundance at pasture scale. However, rotational grazing allows spatial and temporal heterogeneity in vegetation structure to be maintained at farm scale, heterogeneity that is beneficial for Orthoptera. In contrast, absence of grazing has a negative impact on Orthoptera abundance as it favours the accumulation of litter, which is detrimental for a high proportion of xerothermophilic Orthoptera associated with bare ground and short vegetation.  相似文献   

2.
Nine representatives of six orders of insects (Orthoptera, Diptera, Coleoptera, Hemiptera, Hymenoptera, Lepidoptera) were extracted and partially processed by means used in the recent isolation of proctolin, a pentapeptide transmitter candidate in insects. Each insect yielded a substance with pharmacological activity on cockroach proctodeal muscle similar to that of proctolin. Like the responses evoked by proctolin and nerve stimulation, responses to the purified extracts were inhibited by tyramine. All of the active substances behaved as proctolin when subjected to paper chromatography or high voltage paper electrophoresis at pH 6.4 and 3.5. Proctolin appears to be widely and perhaps universally present in the Insecta occurring in most at levels of 2 to 9 μg/kg body weight.  相似文献   

3.
A previous study demonstrated that California ground squirrels (Spermophilus beecheyi) living in the natural environment had, independent of season, a significantly higher mean diurnal body temperature (T(b)) (39.6 degrees C) than either summer (37.5 degrees C) or winter (36.5 degrees C) laboratory maintained animals. Based upon the previous study it has been suggested that California ground squirrels living in the natural environment may have an elevated set-point for body temperature in a manner analogous to a stress fever response. The present study was conducted to determine if season and/or duration of laboratory open-field exposure influenced the magnitude of laboratory open-field stress fever. If stress fever was involved to some extent in the higher body temperature observed in animals from the natural environment, laboratory maintained animals should exhibit a lower magnitude stress fever during the summer months and a higher magnitude stress fever during the winter months. It was hypothesized that laboratory maintained animals would exhibit the same set-point for stress fever T(b) independent of season, and that the duration of open-field exposure would not influence the magnitude of stress fever. Adult California ground squirrels were acclimated to an ambient temperature of 20+/-1.0 degrees C under either LD 14:10 (summer) or LD 10:14 (winter) photoperiod conditions and individuals from both photoperiod conditions were exposed for periods of 2, 4, and 6 h to an open-field arena. An analysis of the data with a two-factor ANOVA demonstrated that season (photoperiod) significantly influenced the magnitude of the stress fever response (1.1+/-0.1 degrees C for summer animals; 2.1+/-0.2 degrees C for winter animals) while there was no significant influence of open-field exposure duration on stress fever magnitude. These results demonstrate that although the set-point for body temperature in unstressed laboratory maintained California ground squirrels varies with season, the set-point for body temperature in open-field stressed animals does not vary with season. These data lend support to the hypothesis that something like stress fever may play some role in the higher body temperature observed in California ground squirrels living in the natural environment.  相似文献   

4.
Journal of Comparative Physiology B - The accumulation of the amino acid cysteine in lysosomes produces toxic substances, which are avoided by a gene (CTNS) coding for a transporter that pumps...  相似文献   

5.
6.
7.
8.
9.
Body size variation among animals has many possible correlates, temporal as well as geographic. Adult male body size was analysed over the course of 23 yr (1989–2011) in a population of Fowler’s toads Anaxyrus fowleri at Long Point, Ontario. We used an information theoretic approach to identify the most likely models to explain body length variation in relation to abundance, age and environmental variables, including temperature. Male toads overall averaged 53.6 ± 0.1 (SE) mm (n = 1976) but average body length from year to year varied from 50.9 ± 0.2 to 61.4 ± 1.3 mm (n = 23 yr), a difference of 18.7%. Abundance was the only variable significantly correlated with body size variation (R²= 0.713, p = < 0.001). A significant 10‐yr trend in increased body size (R²= 0.874, p = < 0.001) was coincident with a previously detected negative trend in abundance. A 0.05°C yr?1 increase in environmental temperature over the course of our study was not significantly correlated with the toads’ body size. Body size variation in these toads is likely related to density‐dependent resource availability for growth in the terrestrial stage. Temporal changes in average body size within populations in relation to density may be a significant component of phenotypic variation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
An antibody highly specific for heat-shock protein (hsp)26, the unique small hsp of yeast, and mutants carrying a deletion of the HSP26 gene were used to examine the physical properties of the protein and to determine its intracellular distribution. The protein was found in complexes with a molecular mass of greater than 500 kD. Thus, it has all of the characteristics, including sequence homology and induction patterns, of small hsps from other organisms. When log-phase cells growing in glucose were heat shocked, hsp26 concentrated in nuclei and continued to concentrate in nuclei when these cells were returned to normal temperatures for recovery. However, hsp26 did not concentrate in nuclei under a variety of other conditions. For example, in early stationary-phase cells hsp26 is induced at normal growth temperatures. This protein was generally distributed throughout the cells, even after heat shock. Similarly, in cells genetically engineered to synthesize hsp26 in the presence of galactose, hsp26 did not concentrate in nuclei, with or without a heat shock. To determine if the failure of hsp26 to concentrate in the nucleus of these cells was due to the fact that the protein had been produced at 25 degrees C or to a difference in the physiological state of the cell, we investigated the distribution of the heat-induced protein in cells grown under several different conditions. In wild-type cells grown in galactose or acetate and in mitochondrial mutants grown in glucose or galactose, hsp26 also failed to concentrate in nuclei with a heat shock. We conclude that the intracellular location of hsp26 in yeast depends upon the physiological state of the cell and not simply upon the presence or absence of heat stress. Our findings may explain why previous investigations of the intracellular localization of small hsps in a variety of organisms have yielded seemingly contradictory results.  相似文献   

17.
18.
Hydrogen sulfide is gaining acceptance as an endogenously produced modulator of tissue function. The present paradigm of H(2)S (diprotonated, gaseous form of hydrogen sulfide) as a tissue messenger consists of H(2)S being released from the desulfhydration of l-cysteine at a rate sufficient to maintain whole tissue hydrogen sulfide concentrations of 30 microM to >100 microM, and these tissue concentrations serve a messenger function. Utilizing physiological concentrations of l-cysteine and aerobic conditions, we found that catabolism of hydrogen sulfide by mouse liver and brain homogenates exceeded the rate of enzymatic release of this compound such that measureable hydrogen sulfide release was less with tissue-containing vs. tissue-free buffers. Analyses of the gas space over rapidly homogenized mouse brain and liver indicated that in situ tissue hydrogen sulfide concentrations were only about 15 nM. Human alveolar air measurements indicated negligible free H(2)S concentrations in blood. We conclude rapid tissue catabolism of hydrogen sulfide maintains whole tissue brain and liver concentrations of free hydrogen sulfide that are three orders of magnitude less than conventionally accepted values and only 1/5,000 of the hydrogen sulfide concentration (100 microM) required to alter cellular function in vitro. For hydrogen sulfide to serve as an endogenously produced messenger, tissue production and catabolism must result in intracellular microenvironments with a sufficiently high hydrogen sulfide concentration to activate a local signaling mechanism, while whole tissue concentrations remain very low.  相似文献   

19.
Tree hollows are a critical but diminishing resource for a wide range of fauna around the world. Conservation of these fauna depends on sustainable management of tree species that produce the hollows on which they depend. This study addressed the need for empirical data about intraspecific and interspecific variation in hollow occurrence and abundance in woodland trees in Australia. We measured and performed hollow surveys on 1817 trees of seven species of woodland Eucalyptus in central‐western New South Wales, Australia. Trees were surveyed at 51 one‐hectare sites and about 30% of trees surveyed had multiple stems. Generalized linear mixed models that accounted for nestedness of stems within trees and trees within sites detected a significant amount of variation in hollow occurrence and abundance. Models for individual tree stems of live trees showed hollow probability and abundance increased with diameter at breast height (DBH) and with increasing senescence (form). Stems of Eucalyptus microcarpa Maiden had a higher probability of having hollows than similar DBH stems of Eucalyptus camaldulensis Dehnh., Eucalyptus melliodora A.Cunn. ex Schauer or Eucalyptus populnea ssp. bimbil L.A.S.Johnson & K.D.Hill. Dead stems in live trees were more likely to have hollows than live stems of similar DBH. Each stem in a multi‐stemmed tree had a lower probability of hollow occurrence and lower abundance of hollows than single‐stemmed trees of similar DBH. For stems of dead trees, hollow occurrence and abundance increased with DBH and differed depending on stage of senescence. A comparison of our data with other studies indicates regional variation of hollow abundances within tree species.  相似文献   

20.
Bedford T  Wapinski I  Hartl DL 《Genetics》2008,179(2):977-984
Although protein evolution can be approximated as a "molecular evolutionary clock," it is well known that sequence change departs from a clock-like Poisson expectation. Through studying the deviations from a molecular clock, insight can be gained into the forces shaping evolution at the level of proteins. Generally, substitution patterns that show greater variance than the Poisson expectation are said to be "overdispersed." Overdispersion of sequence change may result from temporal variation in the rate at which amino acid substitutions occur on a phylogeny. By comparing the genomes of four species of yeast, five species of Drosophila, and five species of mammals, we show that the extent of overdispersion shows a strong negative correlation with the effective population size of these organisms. Yeast proteins show very little overdispersion, while mammalian proteins show substantial overdispersion. Additionally, X-linked genes, which have reduced effective population size, have gene products that show increased overdispersion in both Drosophila and mammals. Our research suggests that mutational robustness is more pervasive in organisms with large population sizes and that robustness acts to stabilize the molecular evolutionary clock of sequence change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号