首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short rotation coppice (SRC) is a biomass production system for energy usually grown on former agricultural land with fast-growing tree species. In Sweden, willow SRC has been grown since the late 1980s. SRC on arable soils may induce changes in some soil quality parameters due to differences in crop characteristics and management practices. In this study, pH, organic carbon (C), and trace element concentrations in the soil of 14 long-term (10–20 years) commercial willow SRC fields in Sweden were compared with those in adjacent, conventionally managed arable soils. The results showed that organic C concentrations in the topsoil and subsoil of SRC fields were, on average, significantly higher (9 % in topsoil, 27 % in subsoil) than in the reference fields. When comparisons were made only for the ten sites where the reference field had a crop rotation dominated by cereal crops, the corresponding figures were 10 % and 22 %. The average concentration of cadmium (Cd), which is considered the most hazardous trace element for human health in the food chain, was 12 % lower in the topsoil of SRC fields than in the reference fields. In the corresponding comparison of subsoils, no such difference was found. For chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), there were no significant differences in concentrations between SRC fields and the reference fields in either topsoil or subsoil. Negligible differences in pH in the same comparisons were found.  相似文献   

2.
A fertilization trial was carried out in established short-rotation willow coppice (SRWC) plantations of two bred varieties of willow (Salix spp.; "Tora" and "Jorr") at five sites in central Sweden between 2008 and 2010. Mineral nitrogen was applied at four different rates: No fertilization (Control), 160 kg nitrogen ha?1 as a single dose after harvest (Economy), 60–100–60 kg nitrogen ha?1 in year 1–2–3 (Normal), and 160 kg nitrogen ha?1 year?1 in years 1–3 (Intensive), using a randomized block design with four replicates. The yield response (biomass increase per kg fertilizer nitrogen) was 65, 67 and 46 kg kg?1 in the Economy, Normal and Intensive treatments, respectively. The results from the fertilization trial were used for economic calculations of different fertilization strategies given varying costs for fertilization and marginal value of the increased yield (price received for wood chips minus the costs for harvest and transportation of wood chips to a district heating plant). Comparative calculations were made based on data from a previous fertilization trial during the first cutting cycle of old, non-bred varieties. The calculations showed positive net present values of fertilizing bred willow varieties given a realistic fertilization response and a price for wood chips close to the market price for forestry-based wood chips in Sweden.  相似文献   

3.
4.
Rapid determination of biomass composition is critical for the selection of shrub willow varieties with optimized biomass properties for conversion into fuels or chemicals. In order to improve the process for identifying and selecting shrub willow clones with distinct biomass composition, high-resolution thermogravimetric analysis (HR-TGA) was developed as a rapid, low-cost method for analyzing large numbers of willow biomass samples. In order to validate the HR-TGA method, bulk biomass collected from 2-year-old stems of a selected set of 25 shrub willow clones was analyzed using traditional wet chemistry techniques in addition to HR-TGA. The results of the wet chemistry and the HR-TGA method were compared using regression analysis resulting in R-squared values above 0.7 for the three main wood components, cellulose, hemicellulose, and lignin. Bark was removed from duplicate stem samples of the same clones, the proportion of bark was determined, and the debarked wood was used for HR-TGA analysis of composition. While there were significant differences in the proportions of lignin and cellulose in debarked wood compared to bulk biomass, as well as significant differences in bark percentage among clones, there was no correlation between bark percentage and bulk biomass component analysis. This work validates the effectiveness, precision, and accuracy of HR-TGA as a reasonably high-throughput method for biomass composition analysis and selection of shrub willow bioenergy crop varieties.  相似文献   

5.
To estimate fossil fuel demand and greenhouse gas emissions associated with short-rotation willow (Salix spp.) crops in New York State, we constructed a life cycle assessment model capable of estimating point values and measures of variability for a number of key processes across eight management scenarios. The system used 445.0 to 1,052.4 MJ of fossil energy per oven-dry tonne (odt) of delivered willow biomass, resulting in a net energy balance of 18.3:1 to 43.4:1. The largest fraction of the energy demand across all scenarios was driven by the use of diesel fuels. The largest proportion of diesel fuel was associated with harvesting and delivery of willow chips seven times on 3-year rotations over the life of the crop. Similar patterns were found for greenhouse gas emissions across all scenarios, as fossil fuel use served as the biggest source of emissions in the system. Carbon sequestration in the belowground portion of the willow system provided a large carbon sink that more than compensated for carbon emissions across all scenarios, resulting in final greenhouse gas balances of ?138.4 to ?52.9 kg CO2 eq. per odt biomass. The subsequent uncertainty analyses revealed that variability associated with data on willow yield, litterfall, and belowground biomass eliminated some of the differences between the tested scenarios. Even with the inclusion of uncertainty analysis, the willow system was still a carbon sequestration system after a single crop cycle (seven 3-year rotations) in all eight scenarios. A better understanding and quantification of factors that drive the variability in the biological portions of the system is necessary to produce more precise estimates of the emissions and energy performance of short-rotation woody crops.  相似文献   

6.
7.
Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.  相似文献   

8.
E.  SHARMA; R.S.  AMBASHT 《Annals of botany》1991,67(4):285-293
Biomass, net primary production and energy fixation in an agesequence of Himalayan alder (Alnus nepalensis D. Don) plantationswere estimated in the Kalimpong forest division of the easternHimalayas. Biomass in the plantations ranged from 106 t ha–1(7-year stand) to 606 t ha–1 (56-year stand) demonstratingthe potential of the alder for accumulating large biomass. Netprimary production and net energy fixation rates of the plantationswere reduced by nearly half in the 7-year stand (25 t ha–1year–1; 421 x 106 kJ ha–1 year–1) comparedwith the 56-year stand (13 t ha–1 year–1; 215 x106 kJ ha–1 year–1). Compartmental models of energystorage and flow rates were developed for the 7-year and 56-yearstands. The production efficiency, energy conversion efficiencyand energy efficiency in N2 fixation have inverse relationshipswith plantation age. These efficiencies, when treated with eachother, showed significant exponential functions. Alnus nepalensis D. Don, Himalayan alder, plantation age, biomass, net primary production, energy flow, efficiencies  相似文献   

9.
Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.  相似文献   

10.
运用非线性联立方程组建模理论建立红松立木相容性生物量模型,然后利用模型计算出人工红松各个样地林木各器官和样地总生物量。以林分年龄、林分平均胸径、林分密度等因素为制约条件,讨论分析林分生物量在林木各器官之间的分配规律,并且探究林分年龄、林木大小和林分密度的变化对林分生物量的影响。结果表明:幼龄红松人工林林分生物量与平均胸径成正相关关系;林分密度对林分生物量影响较大,并且随着密度的增大而增大,且最适合的林分密度范围是1 000~1 400株·ha-1;红松人工幼、中龄林林分生物量各器官分配规律相同,表现为树干树根树枝树叶,地上生物量占林分生物量79%左右;林分地上和地下生物量大概呈3.8∶1的比例。  相似文献   

11.
Shrub willow has potential for being a viable dedicated bioenergy crop in temperate northern latitudes of the USA. Selection of high-producing willow cultivars is critical for economic viability and long-term sustainability of willow production systems. Long-term trials are needed in different geographic areas to better understand genetic by environment interactions on biomass yield for greater profitability and to enhance future breeding efforts. Field trials were conducted in two contrasting environments, northern New York and southern Minnesota, to explore changes in shrub willow yield ranking over three harvest cycles across a range of cultivars and diversity groups. Overall, the MN site produced higher, more stable biomass yields than the NY site due primarily to more productive soils, warmer climate, and less weed pressure. However, between-site differences in willow biomass yield were nominal after the second harvest cycle. Yield variability among the top five willow cultivars at each harvest was significantly less than variability among all cultivars regardless of site. Shrub willow cultivars identified in the top-ranking groups were different between sites. Results show that willow can be a viable long-term crop for sustained biomass feedstock production across a wide range of soils and climates but proper cultivar selection is critical for biological and economic success.  相似文献   

12.
13.
蓝藻培养体系中光强衰减的研究   总被引:2,自引:0,他引:2  
蓝藻又名蓝细菌,是一类原核的光合生物。光强是影响蓝藻细胞生长的重要环境因子之一。    相似文献   

14.
Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal. DAYCENT estimations of stover yields were correlated and reasonably accurate (adjusted r 2?=?0.53, slope?=?1.18, p?<<?0.001, intercept?=?0.36, p?=?0.11). Measured and simulated average grain yields across sites did not differ as a function of residue removal, but the model tended to underestimate average measured grain yields. Modeled and measured soil organic carbon (SOC) change for all sites were correlated (adjusted r 2?=?0.54, p?<<?0.001), but DAYCENT overestimated SOC loss with conventional tillage. Simulated and measured SOC change did not vary by residue removal rate. DAYCENT simulated annual N2O flux more accurately at low rates (≤2-kg N2O-N ha?1 year?1) but underestimated when emission rates were >3-kg N2O-N ha?1 year?1. Overall, DAYCENT performed well at simulating stover yields and low N2O emission rates, reasonably well when simulating the effects of management practices on average grain yields and SOC change, and poorly when estimating high N2O emissions. These biases should be considered when DAYCENT is used as a decision support tool for recommending sustainable corn stover removal practices to advance bioenergy industry based on corn stover feedstock material.  相似文献   

15.
Short rotation coppice (SRC) willows (Salix spp.) are fast-growing woody plants which can achieve high biomass yields over short growth cycles with low agrochemical inputs. Biomass from SRC willow is already used for heat and power, but its potential as a source of lignocellulose for liquid transport biofuels has still to be assessed. In bioethanol production from lignocellulose, enzymatic saccharification is used as an approach to release glucose from cellulose in the plant cell walls. In this study, 138 genotypes of a willow mapping population were used to examine variation in enzymatic glucose release from stem biomass to study relationships between this trait and biomass yield traits and to identify quantitative trait loci (QTL) associated with enzymatic saccharification yield. Significant natural variation was found in glucose yields from willow stem biomass. This trait was independent of biomass yield traits. Four enzyme-derived glucose QTL were mapped onto chromosomes V, X, XI, and XVI, indicating that enzymatic saccharification yields are under significant genetic influence. Our results show that SRC willow has strong potential as a source of bioethanol and that there may be opportunities to improve the breeding programs for willows for increasing enzymatic saccharification yields and biofuel production.  相似文献   

16.
Measuring Biomass and Carbon Stock in Resprouting Woody Plants   总被引:1,自引:0,他引:1  
Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation.  相似文献   

17.
Honey mesquite (Prosopis glandulosa Torr.), a multistemmed tree that grows on grasslands and rangelands in the South Central USA (Texas, Oklahoma, and New Mexico), may have potential as a bioenergy feedstock due to a large amount of existing standing biomass and significant regrowth potential following initial harvest. The objective of this research was to determine the cost to harvest, store, and deliver mesquite biomass feedstock to a bioelectricity plant under the assumption that the rights to harvest mesquite could be acquired in long-term leases. The advantage of mesquite and similar rangeland shrubs as bioenergy feedstocks is that they do not grow on land better suited for growing food or fiber and thus will not impact agricultural food markets as corn grain ethanol has done. In addition, there are no cultivation costs. Results indicated that mesquite biomass density (Mg?ha?1) and harvesting costs are major factors affecting cost of delivered biomass. Annual biomass consumption by the bioelectricity plant and percent of the total system area that contains biomass density that is suitable for harvest significantly affected land- related factors including total system area needed per bioelectricity plant and transport costs. Simulation results based on actual biomass density in Texas showed that higher and more spatially consistent biomass density would be an important factor in selecting a potential location for the bioelectricity plant. Harvesting mesquite has the potential for bioenergy feedstock given certain densities and total land areas since higher harvest and transport costs are offset by essentially no production costs.  相似文献   

18.
Carbohydrate and lignin composition of feedstock materials are major factors in determining their bioenergy potential. This study was conducted to quantify dry biomass yield and the carbohydrate and lignin composition of six potential biofuel grasses (elephantgrass, energycane, sweetcane, giant reed, giant miscanthus, and sugarcane) across three sites in Florida for plant (2009) and first ratoon (2010) crops. Dry biomass yields ranged from about 30 to 50 Mg ha?1 and were generally greatest for elephantgrass, energycane, sweetcane, and sugarcane. Accordingly, total plant carbohydrate yields (20 to 25 Mg ha?1) were comparable among sugarcane, energycane, sweetcane, and elephantgrass, but were generally less for giant reed and even less for giant miscanthus. However, the contribution of total extractable carbohydrates and total fiber carbohydrates to total plant carbohydrate yields differed among species. Sugarcane had the highest concentrations of extractable carbohydrates (219 to 356 mg g?1), followed by energycane, then sweetcane, elephantgrass, and giant reed, with giant miscanthus having the lowest. Energycane and elephantgrass tended to have significantly more fiber glucose, and elephantgrass less xylose, than other species. Variability in total lignin concentrations on a fiber basis was relatively modest (250 to 285 mg g?1) across species, but was generally highest in sweetcane and giant reed. Overall, elephantgrass and energycane were prime regional candidates for cellulosic conversion using fermentation processes due to high yields and favorable fiber characteristics, although energycane tended to have higher extractable carbohydrates.  相似文献   

19.
The present study was undertaken to obtain insights into the productivity determinant traits of mulberry (Morus spp. L.), a potential bioenergy tree crop. Our objectives were to identify leaf functional traits and stem wood characteristics that are correlated to biomass yield of mulberry. Based on the growth performance, six mulberry genotypes from different performance groups including high (Selection1 and Thaibeelad), average (Mysore Local) and poor (Triploid10, Jhoropakari and Selection1635) were selected for the study, along with a reference high-yielding genotype (Victory1). The study was conducted in Southern India for two consecutive years, covering two experimental seasons including exp season I (July 2009 to October 2009) and exp season II (July 2010 to October 2010). Mulberry trees were cultivated in a short-rotation coppice system under well-irrigated optimum farming conditions. Data were collected on biomass yield along with several leaf-level physiobiochemical characteristics and wood quality parameters. Significant genetic variation was recorded amongst the genotypes in most of the studied parameters. Fifteen out of a total of 22 traits, used in computing correlation coefficient matrix, were found to correlate with aboveground biomass yield. Light-saturated rate of photosynthesis, performance index, leaf nitrogen content, minimum leaf water potential and leaf-specific hydraulic conductance showed strong positive correlation with biomass productivity. Wood density, wood cross-sectional area and fibre cell density exhibited tight correlation with woody biomass yield. In conclusion, the identified 15 characteristics could be useful in the selection of suitable mulberry genotypes for higher biomass yield.  相似文献   

20.
Exotic tree plantations may serve as catalysts for native forest regeneration in agriculturally degraded landscapes. In 2001, we evaluated plant species regeneration in the understory of a 7‐year‐old experimental Eucalyptus saligna forest in Hawaii approximately 1 year after the cessation of 5 years of herbicide. These forests were organized in a 2 × 2–factorial design of planting density (1 × 1– or 3 × 3–m spacing) and fertilization (unfertilized control and regular fertilization), which resulted in varying resource availabilities. We found that understory biomass was highest under high light conditions, regardless of fertilization treatment, whereas species richness was lowest under fertilized 1 × 1–m plots. The understory was dominated by species exotic to Hawaii. The most common tree species, the noxious weed Citharexylum caudatum, was particularly successful because high light–saturated photosynthesis rates and a low light compensation point allowed for high growth and survival under both light conditions. To assess longer‐term recruitment patterns, we resurveyed a portion of this site in 2006 and also surveyed five Eucalyptus plantations in this region of Hawaii that differed in age (5–23 years), species (E. saligna, E. grandis, E. cloeziana, E. microcorys), and management (experimental, industrial, nonindustrial stewardship); all were established on previous agricultural sites within approximately 3 km of native‐dominated forest. Again, very few native species were present in any of the stands, indicating that within certain landscapes and for native species with certain life history traits, exotic plantations may be ineffective nursery ecosystems for the regeneration of native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号