首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 2001, the U.S. government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series analyzed civilian biodefense funding by the federal government from fiscal years 2001 through 2007. This article updates those figures with budgeted amounts for fiscal year 2008, specifically analyzing the budgets and allocations for biodefense at the Department of Health and Human Services, the Department of Homeland Security, the Department of Defense, the Department of Agriculture, the Environmental Protection Agency, the Department of State, and the National Science Foundation.  相似文献   

2.
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. An earlier article analyzed the civilian biodefense funding by the federal government from fiscal years 2001 through 2005. This article updates those figures with budgeted amounts for fiscal year 2006, specifically analyzing the budgets and allocations for biodefense at the Department of Health and Human Services, the Department of Homeland Security, the Department of Agriculture, the Environmental Protection Agency, the National Science Foundation, and the Department of State.  相似文献   

3.
Over the past several years, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. This article analyzes the civilian biodefense funding by the federal government from fiscal years 2001 through 2005, specifically analyzing the budgets and allocations for biodefense at the Department of Health and Human Services, the Department of Homeland Security, the Department of Defense, the Department of Agriculture, the Environmental Protection Agency, the National Science Foundation, and the Department of State. In total, approximately $14.5 billion has been funded for civilian biodefense through FY2004, with an additional $7.6 billion in the President's budget request for FY2005.  相似文献   

4.
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series analyzed civilian biodefense funding by the federal government from fiscal years 2001 through 2008. This article updates those figures with budgeted amounts for fiscal year 2009, specifically analyzing the budgets and allocations for biodefense at the Departments of Health and Human Services, Homeland Security, Defense, Agriculture, and State and the Environmental Protection Agency and the National Science Foundation.  相似文献   

5.
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series have analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through proposed funding for FY2011. This article updates those figures with budgeted amounts for FY2012, specifically analyzing the budgets and allocations for biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, Commerce, and State; the Environmental Protection Agency; and the National Science Foundation. This article also includes an updated assessment of the proportion of biodefense funding provided for programs that address multiple scientific, public health, healthcare, national security, and international security issues in addition to biodefense. The FY2012 federal budget for civilian biodefense totals $6.42 billion. Of that total, $5.78 billion (90%) is budgeted for programs that have both biodefense and nonbiodefense goals and applications, and $637.6 million (10%) is budgeted for programs that have objectives solely related to biodefense.  相似文献   

6.
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series have analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through proposed funding for FY2012. This article updates those figures with budgeted amounts for FY2013, specifically analyzing the budgets and allocations for civilian biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, Commerce, and State; the Environmental Protection Agency; and the National Science Foundation. As in previous years, our analysis indicates that the majority (>90%) of the "biodefense" programs included in the FY2013 budget have both biodefense and non-biodefense goals and applications-that is, programs to improve infectious disease research, public health and hospital preparedness, and disaster response more broadly. Programs that focus solely on biodefense represent a small proportion (<10%) of our analysis, as the federal agencies continue to prioritize all-hazards preparedness. For FY2013, the federal budget for programs focused solely on civilian biodefense totals $574.2 million, and the budget for programs with multiple goals and applications, including biodefense, is $4.96 billion, for an overall total of $5.54 billion.  相似文献   

7.
The threat of bioterrorism has prompted the U.S. to undertake a vast biodefense initiative, including funding biodefense-related scientific research at unprecedented levels. Unfortunately, the many ethical, economic, environmental, legal, and social implications (E(3)LSI) of biodefense research and activities are not yet receiving the attention they warrant. Previously, in laudable demonstrations of foresight and responsibility, the federal government has funded research into the E(3)LSI of other recent scientific endeavors--namely, the Human Genome Project and the nanotechnology research program--through directed appropriations from their respective research budgets. This article advocates and proposes a model for a portion of biodefense funding to be similarly set aside for an E(3)LSI research program to complement biodefense research, to ensure that bioterror preparedness does not give rise to harmful or otherwise undesirable unintended consequences.  相似文献   

8.
Potential bioweapons are biological agents (bacteria, viruses and toxins) at risk of intentional dissemination. Biodefense, defined as development of therapeutics and vaccines against these agents, has seen an increase, particularly in the US, following the 2001 anthrax attack. This review focuses on recombinant antibodies and polyclonal antibodies for biodefense that have been accepted for clinical use. These antibodies aim to protect against primary potential bioweapons or category A agents as defined by the Centers for Disease Control and Prevention (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox virus and certain others causing viral hemorrhagic fevers) and certain category B agents. Potential for prophylactic use is presented, as well as frequent use of oligoclonal antibodies or synergistic effect with other molecules. Capacities and limitations of antibodies for use in biodefense are discussed, and are generally applicable to the field of infectious diseases.Key words: antibody, anthrax, plague, smallpox, botulism, tularemia, brucellosis, hemorrhagic, ricin, SEB  相似文献   

9.
King NB 《Bioethics》2005,19(4):432-446
This essay reviews major areas of ethical debate with regard to biodefense, focusing on cases in which biodefense presents ethical problems that diverge from those presented by naturally-occurring outbreaks of infectious disease. It concludes with a call for ethicists to study not only the ethical issues raised in biodefense programs, but also the ethics of biodefense more generally.  相似文献   

10.
《MABS-AUSTIN》2013,5(6):517-527
Potential bioweapons are biological agents (bacteria, viruses, and toxins) at risk of intentional dissemination. Biodefense, defined as development of therapeutics and vaccines against these agents, has seen an increase, particularly in the US following the 2001 anthrax attack. This review focuses on recombinant antibodies and polyclonal antibodies for biodefense that have been accepted for clinical use. These antibodies aim to protect against primary potential bioweapons, or category A agents as defined by the Centers for Disease Control and Prevention (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox virus, and certain others causing viral hemorrhagic fevers) and certain category B agents. Potential for prophylactic use is presented, as well as frequent use of oligoclonal antibodies or synergistic effect with other molecules. Capacities and limitations of antibodies for use in biodefense are discussed, and are generally applicable to the field of infectious diseases.  相似文献   

11.
Biological warfare (BW) threat assessments identify and prioritize BW threats to civilian and military populations. In an ideal world, they provide policymakers with clear and compelling guidance to prioritize biodefense research, development, testing, evaluation, and acquisition of countermeasures. Unfortunately, the biodefense community does not exist in an ideal world. National security professionals responsible for crafting BW threat assessments often are challenged by factors that limit the clarity and/or timeliness of those assessments. Moreover, the potential for life science advances to enhance threats enabled by state programs and the possibility that non-state actors may pursue crude but effective BW methodologies will drastically expand the scope of the perceived threat. Appropriate investment of federal biodefense funds will require some mechanism for validating and prioritizing present and future threats. Ideally, such a mechanism will incorporate empirical data targeted to elucidate actual hazards. In this regard, the Department of Homeland Security's creation of a Biological Threat Characterization Program for the technical validation of threat agents will be a valuable addition to the nation's overall biodefense strategy. This article articulates the need for a coordinated national biological threat characterization program, discusses some of the principal challenges associated with such research, and suggests a few options for their resolution.  相似文献   

12.
Therapeutics and vaccines are available for only a fraction of biological threats, leaving populations vulnerable to attacks involving biological weapons. Existing U.S. policies to accelerate commercial development of biodefense products have thus far induced insufficient investment by the biopharmaceutical industry. In this article, we examine the technical, regulatory, and market risks associated with countermeasure development and review existing and proposed federal incentives to increase industrial investment. We conclude with several recommendations. To increase industry's engagement in biodefense countermeasure development, Congress should expand BioShield funding, giving HHS the flexibility to fund a portfolio of biodefense countermeasures whose revenues are comparable to those of commercial drugs. Congress should establish tradable priority review vouchers for developers of new countermeasures. A National Academy of Sciences or National Biodefense Science Board should formally evaluate incentive programs and a government-managed "Virtual Pharma," in which HHS contracts separate stages of research, development, and production to individual firms.  相似文献   

13.
Five years after the US anthrax attacks, and more than two years after BioShield legislation was ratified, a survey reveals that biodefense funding has thus far produced only a handful of products for clinical development.  相似文献   

14.
Food-borne pathogens are a major health problem. The large and diverse number of microbial pathogens and their virulence factors has fueled interest in technologies capable of detecting multiple pathogens and multiple virulence factors simultaneously. Some of these pathogens and their toxins have potential use as bioweapons. DNA microarray technology allows the simultaneous analysis of thousands of sequences of DNA in a relatively short time, making it appropriate for biodefense and for public health uses. This paper describes methods for using DNA microarrays to detect and analyze microbial pathogens. The FDA-1 microarray was developed for the simultaneous detection of several food-borne pathogens and their virulence factors including Listeria spp., Campylobacter spp., Staphylococcus aureus enterotoxin genes and Clostridium perfringens toxin genes. Three elements were incorporated to increase confidence in the microarray detection system: redundancy of genes, redundancy of oligonucleotide probes (oligoprobes) for a specific gene, and quality control oligoprobes to monitor array spotting and target DNA hybridization. These elements enhance the reliability of detection and reduce the chance of erroneous results due to the genetic variability of microbes or technical problems with the microarray. The results presented demonstrate the potential of oligonucleotide microarrays for detection of environmental and biodefense relevant microbial pathogens.  相似文献   

15.
16.
In the current venture capital climate, it is easier to secure funding for late-stage, next-in-class therapeutic agents than for early-stage opportunities that have the potential to advance basic science and translational medicine. This funding paradigm is particularly problematic for the development of "dual-use" biothreat countermeasures such as antibiotics, vaccines, and antitoxins that target pathogens in novel ways and that have broad public health and biodefense applications. To address this issue, we propose the creation of the Drug Development Incentive Fund (DDIF), a novel funding mechanism that can stimulate the development of first-in-class agents that also possess the capability to guard against potential biothreats. This program would also support greater synergies between public funding and private venture investment. In a single act, this organization would secure science of national importance from disappearing, invest in projects that yield significant public health returns, advance the promises of preclinical and early phase research, revitalize biopharmaceutical investment, and create valuable innovation-economy jobs.  相似文献   

17.
A biological aerosol attack in a city could infect tens of thousands of people. In the absence of announcements by the attacker or detection by present point detection systems, victims would be unaware of their exposure prior to developing symptoms. Since infections are most effectively countered before the onset of symptoms, detection technologies that provide early awareness of an attack should be given high priority. Current biological point detection (BPD) systems collect environmental air samples and then analyze them in laboratories so as to permit detection within 12-36 hours of an attack. Improvements in the pipeline may reduce this lag time to as little as a few hours. However, BPD systems have inherent weaknesses when used to detect and respond to an aerosol attack. The likelihood of a limited number of BPD systems intercepting an aerosol plume in a vast attack space may be low. Moreover, BPD systems do not provide critical information needed for response, such as the source location, precise time, and geographic reach of an attack. The missing information would invaluably guide prophylaxis distribution, identification of contaminated areas, and criminal apprehension. This article describes how lidars used for real-time observation of aerosol plumes could complement BPD systems by providing fine-scale spatial and temporal information. A lidar system also could be used to corroborate positive BPD system results, to improve reaction to positive results, and/or to provide an independent basis for low-regret protective steps. Lidar systems can resolve key biodefense challenges, and this article describes three compatible concepts of operations. Leveraging lessons from a lidar system now operating at the Pentagon, a test of an expanded lidar network would provide immediate protection for key Washington, DC, assets, demonstrate the synergy of BPD systems and lidars, and provide a test bed for research to improve lidar's shortcomings.  相似文献   

18.
The anthrax attacks of 2001 demonstrated that bioterrorism poses a significant threat to U.S. national security. This threat is increasing as a result of the rapid expansion in scale and technical capabilities of the global biotechnology industry, which is broadening the availability of materials, technologies, and expertise needed to produce a biological weapon and is lowering the barriers to biological weapons terrorism and proliferation. At the same time, there has been a rise of sophisticated yet loosely networked transnational terrorist groups that have shown an interest in bioterrorism. The United States must confront this convergence. Although the U.S. government pursues many different biodefense programs to bolster its ability to detect and respond to a bioterrorist attack, these efforts must be augmented with preventive measures to meet today's international challenges. U.S. Homeland Security Presidential Directive 10 of April 2004 defines "Prevention and Protection" as one of the four essential pillars of the U.S. response to the bioterrorist threat. However, while bioscience and policy experts have proposed a variety of preventive initiatives, the creation of such programs has been slow and limited. Global biological materials management, which would focus on identifying and protecting those biological materials at the greatest risk of being used maliciously, is one potential solution. Such an approach would augment current U.S. biodefense efforts, provide the international community an effective means of mitigating the global threat of bioterrorism, and strengthen the international community's battle against emerging infectious disease.  相似文献   

19.
A significant portion of the domestic bio-research base-and the one most likely to provide translational research-is not engaged in biodefense. Despite the fact that more than one-third of all life science researchers are employed in commercial bio-research, fewer than 3% of the 1,500 U.S. bio-technology companies are involved in biosecurity initiatives. The bio-tech industry has largely not aligned itself to play an integral role in biosecurity, but there are a few policy changes that could dramatically alter this balance. These include engaging and motivating the bio-technology middle class, seeding secondary markets, focusing on system solutions, providing reagents and standards, aligning communications, and prioritizing translational research. By reaching out, policymakers can span the current chasm between the bio-industry and government, build a stable biodefense industrial base, establish solid working relationships, and secure better services and products. The rewards would be significant for government and industry alike.  相似文献   

20.
With the continued growth in demand for mineral resources and China''s efforts in increasing investment in geological prospecting, fiscal investment in geological exploration becomes a research hotspot. This paper examines the yearly relationship among fiscal investment in geological exploration of the current term, that of the last term and prices of mining rights over the period 1999–2009. Hines and Catephores'' investment acceleration model is applied to describe the scale determinants of fiscal investment in geological exploration which are value-added of mining rights, value of mining rights and fiscal investment in the last term. The results indicate that when value-added of mining rights, value of mining rights or fiscal investment in the last term moves at 1 unit, fiscal investment in the current term will move 0.381, 1.094 or 0.907 units respectively. In order to determine the scale of fiscal investment in geological exploration for the current year, the Chinese government should take fiscal investment in geological exploration for the last year and the capital stock of the previous investments into account. In practice, combination of government fiscal investment in geological exploration with its performance evaluation can create a virtuous circle of capital management mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号