首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimsThe type 2 muscarinic receptor (M2R) differs from the other G-protein-coupled muscarinic receptor (type 4, or M4R) in tissue distribution and physiologic effects. We studied the impact of these receptors on sleep and arousal by using M2R and M4R knock-out (KO) mice.Main methodsM2R and M4R KO and genetically intact mice were compared in terms of normal patterns of sleep, responses to sleep loss, infectious challenge and acoustic startle, and acoustic prepulse inhibition of startle (PPI).Key findingsUnder basal conditions, M2R and M4R KO mice do not differ from the background strain or each other in the amount or diurnal pattern of sleep, locomotor activity, and body temperature. After enforced sleep loss, M2R KO mice, in contrast to the other two strains, show no rebound in slow-wave sleep (SWS) time, although their SWS is consolidated, and they show a greater rebound in time spent in REMS (rapid-eye-movement sleep) and REMS consolidation. During influenza infection, M2R KO mice, as compared with the other strains, show marked hypothermia and a less robust increase in SWS. During Candida albicans infection, M2R KO mice show a greater increase in SWS and a greater inflammatory response than do the other strains. M2R KO mice also show greater acoustic startle amplitude than does the background strain, although PPI was not different across the 3 strains over a range of stimulus intensities.SignificanceTaken together, these findings support different roles for M2R and M4R in the modulation of sleep and arousal during homeostatic challenge.  相似文献   

2.
Ghrelin is well known for its feeding and growth hormone-releasing actions. It may also be involved in sleep regulation; intracerebroventricular administration and hypothalamic microinjections of ghrelin stimulate wakefulness in rats. Hypothalamic ghrelin, together with neuropeptide Y and orexin form a food intake-regulatory circuit. We hypothesized that this circuit also promotes arousal. To further investigate the role of ghrelin in the regulation of sleep-wakefulness, we characterized spontaneous and homeostatic sleep regulation in ghrelin knockout (KO) and wild-type (WT) mice. Both groups of mice exhibited similar diurnal rhythms with more sleep and less wakefulness during the light period. In ghrelin KO mice, spontaneous wakefulness and rapid-eye-movement sleep (REMS) were slightly elevated, and non-rapid-eye-movement sleep (NREMS) was reduced. KO mice had more fragmented NREMS than WT mice, as indicated by the shorter and greater number of NREMS episodes. Six hours of sleep deprivation induced rebound increases in NREMS and REMS and biphasic changes in electroencephalographic slow-wave activity (EEG SWA) in both genotypes. Ghrelin KO mice recovered from NREMS and REMS loss faster, and the delayed reduction in EEG SWA, occurring after sleep loss-enhanced increases in EEG SWA, was shorter-lasting compared with WT mice. These findings suggest that the basic sleep-wake regulatory mechanisms in ghrelin KO mice are not impaired and they are able to mount adequate rebound sleep in response to a homeostatic challenge. It is possible that redundancy in the arousal systems of the brain or activation of compensatory mechanisms during development allow for normal sleep-wake regulation in ghrelin KO mice.  相似文献   

3.
Xie X  Jhaveri KA  Ding M  Hughes LF  Toth LA  Ramkumar V 《Life sciences》2007,81(13):1031-1041
The striatal dopamine D2 receptor (D2R) and adenosine A2A receptor (A2AAR) exhibit mutually antagonistic effects through physical interactions and by differential modulation of post-receptor signaling pathways. The expression of the A2AAR and the D2R is differentially regulated by nuclear factor-kappaB (NF-kappaB). In this report, we determined the role of NF-kappaB in regulation of these receptors by comparing mice deficient in the NF-kappaB p50 subunit (p50 KO) with genetically intact B6129PF2/J (F2) mice. Quantification of adenosine receptor (AR) subtypes in mouse striatum by real time PCR, immunocytochemistry and radioligand binding assays showed more A2AAR but less A1AR in p50 KO mice as compared with F2 mice. Striata from p50 KO mice also had less D2R mRNA and [(3)H]-methylspiperone binding than did striata from F2 mice. G(alphaolf) and G(alphas) proteins, which are transducers of A2AAR signals, were also present at a higher level in striata from the p50 KO versus F2 mice. In contrast, the G(alphai1) protein, which transduces signals from the A1AR and D2R, was significantly reduced in striata from p50 KO mice. Behaviorally, p50 KO mice exhibited increased locomotor activity relative to that of F2 mice after caffeine ingestion. These data are consistent with a role for the NF-kappaB in the regulation of A1AR, A2AAR, D2R and possibly their coupling G proteins in the striatum. Dysregulation of these receptors in the striata of p50 KO mice might sensitize these animals to locomotor stimulatory action of caffeine.  相似文献   

4.
TNF-α plays critical roles in host-defense, sleep-wake regulation, and the pathogenesis of various disorders. Increases in the concentration of circulating TNF-α after either sleep deprivation or sleep fragmentation (SF) appear to underlie excessive daytime sleepiness in patients with sleep apnea (OSA). Following baseline recordings, mice were subjected to 15 days of SF (daily for 12 h/day from 07.00 h to 19.00 h), and sleep parameters were recorded on days1, 7 and 15. Sleep architecture and sleep propensity were assessed in both C57BL/6J and in TNF-α double receptor KO mice (TNFR KO). To further confirm the role of TNF-α, we also assessed the effect of treatment with a TNF- α neutralizing antibody in C57BL/6J mice. SF was not associated with major changes in global sleep architecture in C57BL/6J and TNFR KO mice. TNFR KO mice showed higher baseline SWS delta power. Further, following 15 days of SF, mice injected with TNF-α neutralizing antibody and TNFR KO mice showed increased EEG SWS activity. However, SWS latency, indicative of increased propensity to sleep, was only decreased in C57BL/6J, and was unaffected in TNFR KO mice as well as in C57BL/6J mice exposed to SF but treated with TNF-α neutralizing antibody. Taken together, our findings show that the excessive sleepiness incurred by recurrent arousals during sleep may be due to activation of TNF-alpha-dependent inflammatory pathways, despite the presence of preserved sleep duration and global sleep architecture.  相似文献   

5.
Sleep-wake disturbances are common in epilepsy, yet the potential adverse effect of seizures on sleep is not well characterized. Genetically epilepsy-prone rats (GEPRs) are a well-studied model of genetic susceptibility to audiogenic seizures. To assess their suitability for investigating relationships between seizures and disordered sleep, we characterized the sleep, activity, and tempera ture patterns of 2 GEPR strains (designated 3 and 9) and Sprague-Dawley (SD) rats in the basal state, after forced wakefulness, and after exposure to sound-induced seizures at light onset and dark onset. Because of observed differences in rapid-eye-movement sleep (REMS), we also assessed serum levels of prolactin, which is implicated in REMS regulation. The data reveal that under basal conditions, the GEPR3 strain shows less SWS and REMS, higher core temperatures, and higher serum prolactin concentrations than do GEPR9 and SD strains. All 3 strains respond similarly to enforced sleep loss. Seizures induced at light onset delay the onset of SWS in both GEPR strains. Seizures induced at dark onset do not significantly alter sleep. Genotype assessment indicates that although both GEPR strains are inbred (that is, homozygous at 107 genetic markers), they differ from each other at 74 of 107 loci. Differences in basal sleep, temperature, and prolactin between GEPR3 and GEPR9 strains suggest different homeostatic regulation of these functions. Our detection of concurrent alterations in sleep, temperature, and prolactin in these 2 GEPR strains implicates the hypothalamus as a likely site for anatomic or physiologic variation in the control of these homeostatic processes.  相似文献   

6.
7.
Interleukin (IL)-1 and tumor necrosis factor (TNF) promote slow-wave sleep (SWS), whereas IL-10 inhibits the synthesis of IL-1 and TNF and promotes waking. We evaluated the impact of endogenous IL-10 on sleep-wake behavior by studying mice that lack a functional IL-10 gene. Under baseline conditions, C57BL/6-IL-10 knockout (KO) mice spent more time in SWS during the dark phase of the light-dark cycle than did genetically intact C57BL/6 mice. The two strains of mice showed generally comparable responses to treatment with IL-1, IL-10, or influenza virus, but differed in their responses to lipopolysaccharide (LPS). In IL-10 KO mice, LPS induced an initial transient increase and a subsequent prolonged decrease in SWS, as well as profound hypothermia. These responses were not observed in LPS-treated C57BL/6 mice. These data demonstrate that in the absence of endogenous IL-10, spontaneous SWS is increased and the impact of LPS on vigilance states is altered. Collectively, these observations support a role for IL-10 in sleep regulation and provide further evidence for the involvement of cytokines in the regulation of sleep.  相似文献   

8.
Electroacupuncture (EAc) possesses a broad therapeutic effect, including improvement of sleep disturbances. The mechanism of sleep improvement with EAc, however, is still unclear. The present study investigated the effects of EAc stimulation of Anmian (extra) acupoints on sleep organization and the implication of an active structure, the caudal nucleus tractus solitarius (NTS). Rats were implanted with electroencephalogram (EEG) recording electrodes, and 32-gauge acupuncture needles were bilaterally inserted into Anmian (extra) acupoints in the rats, followed by electrical stimulation for 20 min. Twenty-three-hour continuous EEGs were then recorded. Results showed that rapid eye movement sleep (REMS) was enhanced during the dark period when a single EAc stimulation was given 25 min prior to the onset of the dark period. REMS and slow-wave sleep (SWS) increased during the dark period after administration of EAc stimuli on 2 consecutive days. Electrical stimulation of non-acupoints produced no change in the sleep pattern. Pharmacological blockade of muscarinic cholinergic receptors by systemic administration of scopolamine dose-dependently attenuated EAc-induced changes in REMS and SWS. Furthermore, electrical lesions in the bilateral caudal NTS produced significant blockade of EAc-induced sleep enhancement. However, in rats without EAc, scopolamine increased SWS during the dark period, but caudal NTS lesions did not alter sleep. In addition, neither EAc nor scopolamine with EAc manipulation produced any change in the slow-wave activity (SWA) during SWS; however, the SWA during SWS was significantly reduced after caudal NTS lesion with EAc. These results suggest that the caudal NTS may be involved in the regulation of EAc-induced sleep alterations.  相似文献   

9.
慢波睡眠的激素与细胞因子调节   总被引:7,自引:0,他引:7  
Li LH  Ku BS 《生理科学进展》2000,31(1):30-34
慢波睡眠(SWS)是最重要的睡眠成分。近年来的研究揭示:腹外侧视前区-结节乳头核(VLPO-TMN)可能是睡眠-觉醒的中枢发生部位。基底前脑吻端前列腺素D2(PGD2)敏感性睡眠促进区(PGD2-SPZ)参与睡眠的皖控。PGD2延长SWS;前列腺素E2(PGE2)延长觉醒,抑制SWS和快动眼睡眠(REMS)。SWS与下丘脑-垂体-肾上腺皮质轴的活动呈负相关,与生长激素的分泌呈正相关。褪黑素(mel  相似文献   

10.
The central neural mechanisms underlying differences in cardiovascular variability between wakefulness, non-rapid-eye-movement sleep (NREMS), and rapid-eye-movement sleep (REMS) remain poorly understood. These mechanisms may involve hypocretin (HCRT)/orexin signaling. HCRT signaling is linked to wake-sleep states, involved in central autonomic control, and impaired in narcoleptic patients. Thus, we investigated whether HCRT signaling plays a role in controlling cardiovascular variability during spontaneous behavior in HCRT-deficient mice. HCRT-ataxin3 transgenic mice lacking HCRT neurons (TG), knockout mice lacking HCRT peptides (KO), and wild-type controls (WT) were instrumented with electrodes for sleep recordings and a telemetric blood pressure transducer. Fluctuations of systolic blood pressure (SBP) and heart period (HP) during undisturbed wake-sleep behavior were analyzed with the sequence technique, cross-correlation functions, and coherent averaging of SBP surges. During NREMS, all mice had lower SBP variability, greater baroreflex contribution to HP control at low frequencies, and greater amplitude of the central autonomic and baroreflex changes in HP associated with SBP surges than during wakefulness. During REMS, all mice had higher SBP variability and depressed central autonomic and baroreflex HP controls relative to NREMS. HP variability during REMS was higher than during NREMS in WT only. TG and KO also had lower amplitude of the cardiac baroreflex response to SBP surges during REMS than WT. These results indicate that chronic lack of HCRT signaling may cause subtle alterations in the control of HP during spontaneous behavior. Conversely, the integrity of HCRT signaling is not necessary for the occurrence of physiological sleep-dependent changes in SBP variability.  相似文献   

11.
Sleep is greatly affected by changes in metabolic state. A possible mechanism where energy-sensing and sleep-regulatory functions overlap is related to lipid metabolism. Fatty acid synthase (FAS) plays a central role in lipid metabolism as a key enzyme in the formation of long-chain fatty acids. We studied the effects of systemic administration of C75, an inhibitor of FAS, on sleep, behavioral activity and metabolic parameters in mice. Since the effects of C75 on feeding and metabolism are the opposite of ghrelin's and C75 suppresses ghrelin production, we also tested the role of ghrelin signaling in the actions of C75 by using ghrelin receptor knockout (KO) mice. After a transient increase in wakefulness, C75 elicited dose-dependent and long lasting inhibition of REMS, motor activity and feeding. Simultaneously, C75 significantly attenuated slow-wave activity of the electroencephalogram. Energy expenditure, body temperature and respiratory exchange ratio were suppressed. The diurnal rhythm of feeding was completely abolished by C75. There was significant correlation between the anorectic effects, the decrease in motor activity and the diminished energy expenditure after C75 injection. We found no significant difference between wild-type and ghrelin receptor KO mice in their sleep and metabolic responses to C75. The effects of C75 resemble to what was previously reported in association with visceral illness. Our findings suggest that sleep and metabolic effects of C75 in mice are independent of the ghrelin system and may be due to its aversive actions in mice.  相似文献   

12.
13.
The role of the somatotropic axis in sleep regulation was studied by using the lit/lit mouse with nonfunctional growth hormone (GH)-releasing hormone (GHRH) receptors (GHRH-Rs) and control heterozygous C57BL/6J mice, which have a normal phenotype. During the light period, the lit/lit mice displayed significantly less spontaneous rapid eye movement sleep (REMS) and non-REMS (NREMS) than the controls. Intraperitoneal injection of GHRH (50 microg/kg) failed to promote sleep in the lit/lit mice, whereas it enhanced NREMS in the heterozygous mice. Subcutaneous infusion of GH replacement stimulated weight gain, increased the concentration of plasma insulin-like growth factor-1 (IGF-1), and normalized REMS, but failed to restore normal NREMS in the lit/lit mice. The NREMS response to a 4-h sleep deprivation was attenuated in the lit/lit mice. In control mice, intraperitoneal injection of ghrelin (400 microg/kg) elicited GH secretion and promoted NREMS, and intraperitoneal administration of the somatostatin analog octretotide (Oct, 200 microg/kg) inhibited sleep. In contrast, these responses were missing in the lit/lit mice. The results suggest that GH promotes REMS whereas GHRH stimulates NREMS via central GHRH-Rs and that GHRH is involved in the mediation of the sleep effects of ghrelin and somatostatin.  相似文献   

14.
Lagos P  Monti JM  Jantos H  Torterolo P 《Life sciences》2012,90(23-24):895-899
AimsTo examine the effects of bilateral microinjection of melanin-concentrating hormone (MCH) 50 and 100 ng into the horizontal limb of the diagonal band of Broca (HDB) on sleep variables during the light phase of the light–dark cycle of the rat.Main methodsMale Wistar rats were implanted for chronic sleep recordings. In addition, a guide cannula was implanted above the right and left HDB. Following the microinjection of MCH or control solution the electroencephalogram and the electromyogram were recorded for 6 h. Data was collected and classified as either wakefulness (W), light sleep, slow wave sleep (SWS) or REM sleep (REMS). Latencies for SWS and REMS, as well as the number of REM periods and the mean duration of REM episodes were also determined.Key findingsMCH 50 and 100 ng significantly decreased W during the first 2-h of recording. Moreover, MCH 100 ng significantly reduced REMS latency and increased REMS time during the first 2-h block of the recording, due to an increase in the number of REM periods.SignificanceOur findings tend to suggest that the basal forebrain participates in the effects of MCH on W and REMS through the deactivation of cholinergic, glutamatergic and γ-aminobutyric acid (GABA)-ergic cells.  相似文献   

15.
We investigated the role of aryl hydrocarbon receptor (AhR) in the regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced apoptosis in thymic T cells. AhR knockout (KO) mice were resistant to TCDD-induced thymic atrophy and apoptosis when compared with the AhR wild-type mice. TCDD triggered the expression of several apoptotic genes, including FasL in AhR wild-type but not AhRKO mice. TCDD-induced increase in FasL was seen only in thymic stromal but not thymic T cells. When TCDD-exposed stromal cells were mixed with untreated thymic T cells, increased apoptosis was detected in T cells that involved Fas-FasL interactions. Thus, apoptosis in T cells was not detected when TCDD-treated stromal cells from FasL-defective or AhRKO mice were mixed with wild-type T cells or when TCDD-exposed wild-type stromal cells were mixed with Fas-deficient T cells. TCDD treatment, in vivo and in vitro, led to colocalization and translocation of NF-kappaB subunits (p50, p65) to the nucleus in stromal but not T cells from AhR wild-type mice. NF-kappaB activation was not observed in stromal cells isolated from TCDD-treated AhRKO mice. Mutations in NF-kappaB-binding sites on the FasL promoter showed that TCDD regulates FasL promoter activity through NF-kappaB. TCDD treatment in vivo caused activation of the death receptor and mitochondrial pathways of apoptosis. Cross-talk between the two pathways was not necessary for apoptosis inasmuch as TCDD-treated Bid KO mice showed thymic atrophy and increased apoptosis, similar to the wild-type mice. These findings demonstrate that AhR regulates FasL and NF-kappaB in stromal cells, which in turn plays a critical role in initiating apoptosis in thymic T cells.  相似文献   

16.
GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.  相似文献   

17.
硝基左旋精氨酸对睡眠抑制作用的机制研究   总被引:1,自引:0,他引:1  
章茜  王书春 《生理学报》1997,49(5):585-588
本文观察了硝基左旋精氨酸(L-NNA,50mg/kg,ip)和L-精氨酸(L-arg,110mg/kg,ip)对慢性植入电极的大鼠睡眠-觉醒周期的影响及中缝核5-羟色胺(5-HT)神经元免疫阳性反应的变化。结果表明:L-NNA显著抑制慢波睡眠和快眼动睡眠,使平均动脉压(MAP)升高。L-arg则使MAP显著降低,对睡眠无明显影响。预先给予L-arg可逆转L-NNA的效应。腹腔给予L-NNA后2h,  相似文献   

18.
Helicobacter hepaticus is an enterohepatic Helicobacter species that induces lower bowel inflammation in susceptible mouse strains, including those lacking the p50/p105 subunit of NF-kappaB. H. hepaticus-induced colitis is associated with elevated levels of IL-12 p40 expression, and p50/p105-deficient macrophages express higher levels of IL-12 p40 than wild-type macrophages after challenge with H. hepaticus. However, the molecular mechanisms by which the p50/p105 subunit of NF-kappaB suppresses IL-12 p40 expression have not yet been elucidated. In this study we have demonstrated that H. hepaticus challenge of macrophages induces ERK activation, and this event plays a critical role in inhibiting the ability of H. hepaticus to induce IL-12 p40. Activation of ERK requires both p50/p105 and the MAPK kinase kinase, Tpl-2. Inhibition of the induction of IL-12 p40 by ERK was independent of c-Rel, a known positive regulator of IL-12 p40. Instead, it was linked to the induction of c-Fos, a known inhibitor of IL-12 p40 expression. These results suggest that H. hepaticus induces ERK activation by a pathway dependent upon Tpl-2 and p105, and that activation of ERK inhibits the expression of IL-12 p40 by inducing c-Fos. Thus, a defect in ERK activation could play a pivotal role in the superinduction of IL-12 p40 observed after challenge of macrophages lacking the p50/p105 subunit of NF-kappaB with H. hepaticus.  相似文献   

19.
Control of activity of the diaphragm in rapid-eye-movement sleep   总被引:2,自引:0,他引:2  
Respiration in rapid-eye-movement sleep (REMS) is known to be highly variable. The purpose of this study was to investigate the source of this variability and to determine which ordering principles remained operative in REM sleep. In unrestrained, naturally sleeping cats we recorded the electroencephalogram, electrooculogram, neck electromyogram, and diaphragmatic electromyogram (EMG) and computed its moving average (MAdi). As a reference, we first examined MAdi during "tonic" REMS, since breathing is fairly regular in this state. "Control" ranges for peak amplitude (PEMG), inspiratory time (TI), duration of postinspiratory inspiratory activity, expiratory time, and the calculated inspiratory slope (PEMG/TI) were determined by overlaying individual breath traces of the time course of MAdi during tonic REMS to form a composite tracing. Next, the time course of the EMG during individual breaths in slow-wave sleep (SWS) and a complete period of consecutive breaths in REMS (both tonic and phasic) were compared with this tonic REMS composite. The number of eye movements per breath was tabulated as an index of phasic activity. The inspiratory slopes during SWS and tonic REMS were similar. However, during phasic REMS, many breaths displayed either increases (excitation) or decreases (inhibition) in slope compared with the "typical" breaths seen in tonic REMS. The occurrence of these altered slopes increased with the frequency of phasic events. TI was inversely related to the slope of the EMG, which tended to minimize changes in PEMG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We hypothesized that nitric oxide (NO) may play a role in homeostatic sleep regulation. To test this hypothesis, we studied the sleep deprivation (SD)-induced homeostatic sleep responses after intraperitoneal administration of an NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME, a cumulative dose of 100 mg/kg). Amounts and intensity of sleep were increased in response to 8 h of SD in control rats (n = 8). Sleep amounts remained above baseline for 16 h after SD followed by a negative rebound. Rapid eye movement sleep (REMS) and non-REMS (NREMS) intensities were elevated for 16 and 4 h, respectively. L-NAME treatment (n = 8) suppressed the rebound increases in NREMS amount and intensity. REMS rebound was attenuated by L-NAME in the first dark period after SD; however, a second rebound appeared in the subsequent dark period. REMS intensity did not increase after SD in L-NAME-injected rats. The finding that the NO synthase inhibitor suppressed rebound increases in NREMS suggests that NO may play a role as a signaling molecule in homeostatic regulation of NREMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号