首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract 1 The green spruce aphid, Elatobium abietinum, is an important defoliator of Sitka spruce in the U.K. However, it is usual for years in which high E. abietinum populations occur to be followed by a year with low aphid densities. The possibility that the performance of E. abietinum is reduced on previously infested Sitka spruce, and that this is the cause of year‐to‐year fluctuations in population density, was investigated by comparing population development and the growth rate of individual aphids on experimentally defoliated trees. 2 Separate experiments were performed to determine whether aphid performance was reduced either in the autumn immediately after defoliation in the spring, or was reduced in the spring of the next year. Different rates of initial defoliation on trees used to test aphid performance were created by artificially infesting the trees with aphids in the spring before the experiments, and varying the time of infestation. 3 Population development and the mean relative growth rate (MRGR) of individual aphids on previously defoliated and undefoliated Sitka spruce did not differ significantly in the spring of the next year. No differences were observed in the nutrient content of the 1‐year‐old needles of previously defoliated or undefoliated trees at this time. 4 In the autumn and winter immediately after spring defoliation, aphid MRGR was significantly higher on trees that had been heavily defoliated earlier in the season compared with trees that had been lightly defoliated. However, the difference in MRGR decreased over the winter period. Nitrogen, phosphorous and potassium concentrations were 9.4–12.2% higher, at the beginning of the autumn, in the current year needles of heavily defoliated trees than in the current year needles of lightly defoliated trees. 5 The experiments indicate that high populations of E. abietinum in the spring do not induce any defensive mechanisms in Sitka spruce that adversely affect subsequent generations of the aphid. By contrast, the results suggest that high spring densities of the aphid improve the nutritional quality of the current year's foliage for autumn generations.  相似文献   

2.
1 Green spruce aphid (Elatobium abietinum) is a serious pest of spruce (Picea spp.) in north‐west Europe, causing defoliation of one‐year‐old and older needles. 2 Relationships between population development of E. abietinum, needle loss and tree growth were compared for five pure genotypes of Sitka spruce and mixed‐genotype material of Sitka and Norway spruce, grown under high and low nutrient conditions. 3 Despite wide differences in flushing date between spruce genotypes, E. abietinum populations peaked on the same date on each genotype and on the mixed‐genotype material, irrespective of nutrient supply. 4 Larger aphid populations developed on trees grown under high nutrient conditions than under low nutrients. However, more needles were lost per aphid in the low nutrient treatment and overall defoliation rates in the two nutrient treatments were similar. 5 Total aphid numbers differed significantly between Sitka spruce genotypes within nutrient treatments, but not in relation to bud‐burst or needle terpene content. Reductions in height growth caused by infestation were greater (15–44%), and related to mean aphid densities and defoliation, in the low nutrient treatment, but were smaller (11–27%) and not related to aphid density and defoliation in the high nutrient treatment. 6 Development of E. abietinum populations was similar on Norway and Sitka spruce, but Norway spruce lost fewer needles. However, the effects of infestation on tree growth were more closely related to aphid density and were similar for Norway and Sitka spruce. 7 Infestation caused a decrease in total root dry weight of Norway and Sitka spruce in proportion to the reductions observed in above‐ground growth.  相似文献   

3.
Abstract 1 The susceptibility of different genotypes of 29‐year‐old Sitka spruce to damage by the green spruce aphid, Elatobium abietinum, was investigated in a progeny trial where aphid damage on individual trees had previously been assessed twice in an earlier stage of ontogenetic development. The progeny trial comprised 14 open‐pollinated families originating from a clonal seed orchard that had been established using mature spruce trees selected for aphid resistance. 2 Previous investigations had demonstrated that resistance was inherited by the offspring, and that differences in resistance between progenies of the individual orchard clones were highly significant. 3 Susceptibility to aphid attack was recorded as the percentage loss of previous year's needles. Differences in susceptibility recorded between the juvenile trees were found to persist after the trees had developed into the closed‐canopy, sexually reproducing stage. Needle loss of the families was significantly less than that of the reference population of Sitka spruce. 4 Hybrids between Sitka spruce and white spruce were defoliated more heavily than pure Sitka spruce, and the difference increased with age. 5 Family heritability of resistance was estimated as 0.60 compared to 0.73 when the trees were assessed in the juvenile stage. The genetic correlation based on family means between damage in the juvenile and sexually reproducing stand was high (0.83), indicating a high consistency of resistance to the aphid over years and ontogenetic stages. 6 A skewed distribution of defoliation indicated that major genes are involved in the expression of resistance, and that the genetics behind resistance has a nonadditive component.  相似文献   

4.
Recorded minimum temperatures of – 7 oC or lower noticeably reduced overwintering populations of the green spruce aphid, Elatobium abietinum, in north-east Scotland. It is suggested that, at these temperatures, ice formation in the needles of the host Sitka spruce, caused attached aphids to freeze. Aphid mortality also occurred when maximum temperatures did not rise above + 6 oC for prolonged periods, possibly as a result of starvation following an extended chill coma. A diagrammatic representation of the main factors affecting anholocyclic populations of E. abietinum during the winter is presented to emphasize the governing role played by temperature. The balance between mortality and recruitment determines the size of the population at the end of the winter, and this in turn determines the subsequent summer infestation. It should be possible, therefore, to predict aphid outbreaks either from winter temperatures or from the number of aphids present at the end of the winter. Temperature records obtained from integrating thermometers indicated that the inside of the lower crown tended to be the warmest part of the tree during the winter, resulting in greater aphid survival in the lower branches.  相似文献   

5.
6.
W. H. Parry 《Oecologia》1976,23(4):297-313
Summary A comparison of the feeding behaviour of E. abietinum on current year needles and previous year needles of P. sitchensis revealed that during the summer months the aphids preferentially settled on previous year needles, this response not being evident in winter. Aphids on current year needles in summer took a much longer period of time to commence sap uptake than in winter, intake ceasing following a very short feeding period. On previous year needles sap uptake in December commenced after a shorter feeding period than in June. Analysis of total and soluble nitrogen levels in Sitka spruce needles showed that current year needles had initially higher levels during shoot elongation in May and early June, but that previous year needles had higher levels for most of the remainder of the year. Quantitative analyses of amino acids revealed that in current year needles the levels were generally lower than in previous year needles. Less marked proportional differences were observed between previous year needles in May and in July/August when the needles were unsuitable. Addition of amino acids in solution into cut current year shoots resulted in increased longevity on shoots containing introduced iso-leucine, histidine and methionine and revealed a general imbalance of the amino acids.  相似文献   

7.
The green spruce aphid, Elatobium abietinum, is the most important defoliating pest of Sitka spruce, Picea sitchensis, in the UK. Populations are expected to increase in response to predicted climate change, therefore placing Sitka spruce under increased risk of widespread and severe defoliation. The effect of spring–summer drought stress on E. abietinum population dynamics and development over multiple years was assessed in a field experiment under five different drought treatments with differing intensities and frequencies. The impact on host tolerance, in terms of needle retention, was also investigated. No differences in the length of time taken to reach peak population size were observed. Despite this, E. abietinum populations were found to respond positively to low amplitude intermittent stress, with high densities maintained for longer after the peak. Spring peak densities of aphids did not differ among drought levels, although an autumn peak was observed consistently over 2 years on trees subjected to continuous severe drought. This suggested advancement in the onset of Sitka spruce dormancy. Aphid infestation significantly increased percentage needle loss under all drought treatments, although no differences were observed between drought levels. An interaction between aphid presence and drought treatment was, however, observed during a second year of drought where no aphids were present. The study herein presented has contributed to the understanding of E. abietinum population responses under a changing climate. The implications for damage to host Sitka spruce are of relevance to forest management strategies, as an increase in drought events are predicted in the UK.  相似文献   

8.
9.
Climate change in the UK is predicted to increase both winter temperatures and the frequency of summer drought events. Elatobium abietinum, the green spruce aphid, is the most important defoliating pest of Sitka spruce, Picea sitchensis, a conifer very widely used in British forest industry. This aphid is expected to respond strongly to altered climate, with changes to population densities leading to more frequent serious outbreaks and defoliation. The impact of simulated spring–summer drought on the reproductive performance of E. abietinum was investigated under laboratory conditions. Rates were assessed under five drought treatments of differing frequencies and intensities to characterize the direction of responses under different drought scenarios, and in time‐staggered trials to explore seasonal variation. Variation in the response of reproduction to water deficit was mediated by drought frequency and magnitude. Low‐amplitude, moderate intermittent stress improved reproductive rates, while severe stress, both continuous and high‐amplitude intermittent, had a detrimental impact when compared with observations made on well‐watered controls. Season was also found to modify the response, with improvements to plant nutritional quality under high‐amplitude stress reflected by improving reproduction. Despite this, no differences in rates were found during the autumn, suggesting no advancement in spruce dormancy under drought. Drought stress therefore has the potential to alter E. abietinum population densities, structure and phenology in Sitka spruce plantations, with implications for forest management, damage levels and natural control of the aphid under future altered climate.  相似文献   

10.
Abstract 1 The Random Amplified Polymorphic DNA (RAPD) method was used to investigate genetic diversity of anholocyclic populations of the green spruce aphid, Elatobium abietinum Walker, in north‐west Europe. 2 The results showed that the aphid in this region was divided genetically into three major groups. Aphids from the British Isles and north‐west France comprised the first group, the second group consisted of aphids from Denmark and Iceland, and the third group consisted of aphids from Norway. 3 The results indicated a significant level of gene flow within and between sites and geographical regions, especially in the British Isles and north‐west France. Lateral migration of the aphid and/or sexual reproduction is likely to have facilitated the gene flow. 4 The implications of these findings on management of the green spruce aphid are discussed.  相似文献   

11.
1 In a field acid mist simulation experiment, Sitka spruce (Picea sitchensis) was sprayed with different pollutant treatments: N, NH4NO3; S, Na2SO4; NS Acid, NH4NO3 + H2SO4 and control, no spray. Treatment effects on the abundance of the green spruce aphid Elatobium abietinum and honeydew production were assessed. In addition, needles were sampled for phyllosphere micro‐organisms. In a manipulative experiment, shoots were established and maintained as with or without E. abietinum infestation in order to determine the effects of infestation on needle loss and throughfall nutrient fluxes. 2 Aphid numbers were highest during the end of May and early June, with almost twice as many needles infested in the NS Acid treatment compared with the other treatments. Honeydew production was not affected by the treatments. 3 On infested shoots, increasing numbers of yellowing and dead needles were recorded above the throughfall collectors as the season progressed. The numbers of dead needles falling into the collectors were significantly higher beneath infested shoots. There were strong positive correlations between aphid numbers above the throughfall collectors, the number of yellowing and dead needles on the shoots and the number of needles in the funnels of the throughfall collectors. Litter production was more affected by aphid number than by pollutant treatment. 4 Bacteria, yeasts and filamentous fungi were more prolific on infested needles and treatment effects on colony forming units (CFUs) were most pronounced in the NS Acid treatment. 5 Fluxes of inorganic nitrogen beneath infested shoots were generally lower than beneath uninfested shoots. This effect was more pronounced in those treatments that supplied N i.e. N, NS Acid. The combination of aphid infestation and N‐addition exerted the strongest influence on nutrient fluxes. The fluxes of potassium and of organic carbon (DOC) were higher beneath infested shoots in all treatments, through most of the survey period.  相似文献   

12.
Abstract 1 During 1968–74, an outbreak of the European spruce sawfly Gilpinia hercyniae, defoliated many stands of Sitka spruce in commercial forests in mid‐Wales. The needle trace method was used to determine retrospectively the temporal pattern and intensity of defoliation in a stand of Sitka spruce in Hafren Forest that had been damaged severely at the time of the sawfly outbreak. 2 An initial calibration experiment, designed to test the reliability of the needle trace method when applied to Sitka spruce, indicated that artificially induced defoliation of up to 75% was detected by the technique with an accuracy of ±7%. Higher rates of defoliation were underestimated by up to 17%. 3 For the main sample of trees, the needle trace method demonstrated that retention of needle sets (average needle retention) was reduced by up to 33–38% over a 10‐year period coincident with the G. hercyniae outbreak and the years immediately afterward when the canopy was recovering. 4 Analysis of needle loss within separate needle cohorts and age‐classes revealed that 1‐year‐old needles were the most severely defoliated. The density of 1‐year‐old needles was reduced by 51–78% in 1970–73. 5 Defoliation at the time of the G. hercyniae outbreak was associated with reductions in annual height, radial, and volume increments of 24–49%, 30–59% and 32–56%, respectively. Radial and volume increments suffered their greatest reductions 1 year later than height increments. 6 The study demonstrates that the needle trace method can be applied successfully to Sitka spruce to quantify defoliation caused by an insect outbreak occurring many years previously, and that the technique can provide data on needle loss that is valuable for interpreting reductions in tree growth.  相似文献   

13.
14.
Laboratory investigations into the low-temperature tolerance of the green spruce aphid, Elatobium abietinum, revealed that the insect was killed by freezing. Aphids and host Sitka spruce needles showed similar seasonal changes in supercooling ability. A noticeable increase in this ability occurred between June and October. Aphids were more susceptible to low temperatures when attached to the plant. It is suggested that mortality resulted from ice which formed in the sap of the host needles and spread into the feeding aphids via their mouthparts. Neither the chlorotic banding of needles, caused by aphid feeding, nor needle length affected needle supercooling. Increased duration of exposure increased the probability of freezing of supercooled needles at low temperatures. A small percentage of first-instar nymphs supercooled to much lower temperatures than the remainder of the population. These were newly born nymphs whose high supercooling ability markedly decreased when they began to feed.  相似文献   

15.
W. H. Parry 《Oecologia》1977,30(4):367-375
Summary Observations over a period of 10 years showed that, in Northeastern Scotland, alatae of E. abietinum regularly appeared in mid-May, the timing being unrelated to aphid density. The peak number of alatae produced was, however, correlated with aphid density. Following an initially high level the proportion of alatae dropped to virtually nil by mid-June, whilst over the same period the aphid population density increased. Amino acid levels in spruce needles were considerably higher during the period of alate formation than they were at the termination of alate production. It is suggested that a high amino acid level was the main factor controlling the formation of alatae and that population density affected the proportions of these alatae only when nutritional levels were favourable for alate formation.  相似文献   

16.
The hypothesis that similar processes govern interannual dynamics of green spruce aphid in the UK and France, is generally supported by the application of a general discrete model. A simple model based on relatively few parameters was able to closely characterise interannual population dynamics from completely independent aerial and arboreal samples of aphids. Long-term field population estimates of the green spruce aphid Elatobium abietinum (Walker) in France have provided the opportunity to select and evaluate the generality of a model, which was developed in the UK to explain the year-to-year variations in peak abundance of the aphid. The objective was to observe the influence of the local climates and disturbing climate factors on the population densities of the insect in two regions of France. The model uses climate variables and aphid population data from regular samples in the two regions that were investigated. A general discrete model was used to predict aphid population densities. The model performed well in tracking the interannual patterns of population but was less likely to predict absolute population density. To improve predictions, further account would need to be taken of additional site-specific climate variables and the strength of overcompensating density dependence. Nevertheless, it is clear that broadly similar processes are at work in the population dynamics of this insect across its biogeographical range.  相似文献   

17.
Abstract 1 The abundance of aphids and their honeydew are important in shaping the ecology of food web interactions and nutrient cycling in forests of Norway spruce. Here, the effects of the different environmental conditions at two study sites located at different altitudes (500 m, 765 m a.s.l.), in the Fichtelgebirge, north‐eastern Bavaria, Germany, on the abundance of Cinara pilicornis and their influence on epiphytic microorganisms on shoots of Picea abies were compared. Subsequent changes in throughfall fluxes were measured over a period of 12 weeks beneath infested and reference trees. In a laboratory experiment, the effects of ultraviolet (UV) radiation on microbial mortality and C and N concentrations in leachates were determined. 2 The warmer and drier conditions at the low altitude site favoured an early onset to aphid multiplication in spring compared with the high altitude site, where aphid numbers peaked 3 weeks later. 3 The presence of honeydew was associated with a significant increase in the total number of cultured epiphytic filamentous fungi, yeasts and bacteria in 12 of the 18 sample units, indicating better culturability or growth, whereas altitude had no significant effect on cultured cell numbers. By contrast to the reference trees, the high dissolved organic carbon (DOC) and hexose‐C fluxes beneath infested trees at the peak in aphid abundance, in June and July, resulted in a concomitant decrease in the fluxes of total inorganic nitrogen beneath infested trees (low altitude: ?19.7%; high altitude: ?52.3%). Fluxes of organic nitrogen were significantly higher beneath infested trees at the time of infestation. Similarly, potassium fluxes in throughfall increased 1.6–2.0‐fold in response to aphid infestation. 4 The exposure of infested and uninfested shoots of Norway spruce to UV‐A and UV‐B radiation only weakly affected epiphytic microbial mortality and did not affect the concentrations of the different nitrogen compound in leachates. However, bacteria, tended to be more active in the leachates collected from infested shoots, which resulted in the higher concentrations of aminosugar‐N. The aphids had a more pronounced effect on the concentrations of DOC in leachates, with average DOC concentrations being 4.2‐fold higher than in leachates from uninfested shoots. 5 It is suggested that, even at very low densities, aphids exert a strong influence via honeydew on the performance of microorganisms, and nutrient and energy flow, in spruce forests.  相似文献   

18.
The light–nitrogen hypothesis suggests canopy photosynthesis is maximized when there is a positive relationship between irradiance received by foliage, its nitrogen content (per unit area Narea), and maximum rate of photosynthesis (Amax). Relationships among relative irradiance and Narea, allocation of nitrogen within the photosynthetic apparatus to Rubisco and chlorophyll, and Amax were examined in Pinus pinaster Ait. needles up to 6 years of age. Measurements were made before bud break in August 1998, and in May 1999 after the first ‘winter’ rains. In August, Narea in P. pinaster needles decreased from 5·1 to 5·7 g m?2 in sunlit 1‐year‐old needles to 2·3 g m?2 in shaded 6‐year‐old needles. In May, Narea was 5–40% less but spatial trends were the same. At both sampling dates, Amax was less in old shaded needles compared with young sunlit needles, and was thus consistent with the light–nitrogen hypothesis. Relationships between Narea and Amax were positive at both dates yet varied in strength and form. Allocation of nitrogen within the photosynthetic apparatus was qualitatively consistent with acclimation to light (i.e. Rubisco/Chl decreased with shading), but quantitatively suboptimal with respect to photosynthesis owing to consistent over‐investment in Rubisco. This over‐investment increased with height in the canopy and was greater in May than in August.  相似文献   

19.
1 The RAPD method (Random Amplified Polymorphic DNA) was used to investigate genetic diversity of the green spruce aphid, Elatobium abietinum Walker, a pest introduced recently to Iceland. 2 This aphid in Iceland comprised two polymorphic populations, one in the east and the other in the west of the country. The genetic variation between sites within a population was continuous and appeared to be in good agreement with geographical distances. 3 In the eastern population the variation was greater between sites than within sites, whereas in the western population the pattern of variation appeared to be the opposite. This overall greater genetic variation in the eastern population could be due to its having been colonized earlier than the western one. 4 The study also demonstrated a close relationship between the green spruce aphid in Iceland and aphids from Denmark, which agrees with their assumed origin. The differences in introduction time, adaptation and competitiveness between the two Icelandic populations are discussed.  相似文献   

20.
Thin layer chromatography separation of 80% ethanol extracts of adult Elatobium abietinum revealed the presence of the polyhydric alcohol mannitol in aphids overwintering outdoors but not in aphids kept permanently indoors at 15°C. After 3 days at 15°C no traces of mannitol were left in overwintering aphids. Mean freezing temperatures of outdoor, unfed instar I nymphs were about 4°C lower than those of unfed instar I nymphs produced at 15°C. Mean freezing temperatures of overwintering adults were considerably higher than those of unfed instar I nymphs and showed no changes associated with time at 15°C following transference indoors. Similarly, mean freezing temperatures of Sitka spruce needles transferred to 15°C did not change. It was concluded that, although freezing was mainly avoided by supercooling, the presence of mannitol lowered the true freezing temperature of aphid haemolymph and, consequently, the actual freezing temperatures of nymphs produced under cold conditions. However, the considerable increase in freezing point temperatures caused by imbibition of plant sap masked these acclimatisation changes in feeding aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号