首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore—the Japanese beetle (Popillia japonica)—increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.  相似文献   

2.
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution.  相似文献   

3.
An increasing number of studies have shown that genetic diversity within plant species can influence important ecological processes. Here, we report a two-year wetland mesocosm experiment in which genotypic richness of Phragmites australis was manipulated to examine its effects on primary productivity and nitrogen removal from water. We used six genotypes of P. australis, and compared primary productivity and nitrogen concentration in the outflow water of the mesocosms between monocultures and polycultures of all six genotypes. We also quantified the abundance of denitrifying bacteria, as denitrification is a primary mechanism of nitrogen removal in addition to the biotic uptake by P. australis. Plant productivity was significantly greater in genotypic polycultures compared to what was expected based on monocultures. This richness effect on productivity was driven by both complementary and competitive interactions among genotypes. In addition, nitrogen removal rates of mesocosms were generally greater in genotypic polycultures compared to those expected based on monocultures. This effect, particularly pronounced in autumn, may largely be attributable to the enhanced uptake of nitrogen by P. australis, as the abundance of nitrite reducers did not increase with plant genotypic diversity. Although our effect sizes were relatively small compared to previous experiments, our study emphasizes the effect of genotypic interactions in regulating multiple ecological processes.  相似文献   

4.
5.
How do emergent properties of natural plant communities affect floral evolution? In this issue, Eisen et al. explored this question by studying selection on floral traits in natural communities of Clarkia species. They found that two community properties, namely congeneric species richness and floral density (of conspecifics and heterospecifics), influenced the patterns of selection, although not through the expected means of pollinator-mediated selection. Instead, the authors suggest that additional factors like competition and facilitation between plants are responsible. The results support the hypothesis that, beside pollinators, other factors of the community context can also determine floral evolution.  相似文献   

6.
Understanding the mechanisms of species coexistence is a key task for ecology. Recent theory predicts that both competition and predation (which causes apparent competition among prey) can either promote or limit species coexistence. Both mechanisms cause negative interactions between individuals, and each mechanism promotes stable coexistence if it causes negative interactions to be stronger between conspecifics than between heterospecifics. However, the relative importance of competition and predation for coexistence in natural communities is poorly known. Here, we study how competition and apparent competition via pre‐dispersal seed predators affect the long‐term fecundity of Protea shrubs in the fire‐prone Fynbos biome (South Africa). These shrubs store all viable seeds produced since the last fire in fire‐proof cones. Competitive effects on cone number and pre‐dispersal seed predation reduce their fecundity and can thus limit recruitment after the next fire. In 27 communities comprising 49 990 shrubs of 22 Protea species, we measured cone number and per‐cone seed predation rate of 2154 and 1755 focal individuals, respectively. Neighbourhood analyses related these measures to individual‐based community maps. We found that conspecific neighbours had stronger competitive effects on cone number than heterospecific neighbours. In contrast, apparent competition via seed predators was comparable between conspecifics and heterospecifics. This indicates that competition stabilizes coexistence of Protea species, whereas pre‐dispersal seed predation does not. Larger neighbours had stronger competitive effects and neighbours with large seed crops exerted stronger apparent competition. For 97% of the focal plants, competition reduced fecundity more than apparent competition. Our results show that even in communities of closely related and ecologically similar species, intraspecific competition can be stronger than interspecific competition. On the other hand, apparent competition through seed predators need not have such a stabilizing effect. These findings illustrate the potential of ‘community demography’, the demographic study of multiple interacting species, for understanding plant coexistence.  相似文献   

7.
Dawson EH  Chittka L 《PloS one》2012,7(2):e31444
Heterospecific social learning has been understudied in comparison to interactions between members of the same species. However, the learning mechanisms behind such information use can allow animals to be flexible in the cues that are used. This raises the question of whether conspecific cues are inherently more influential than cues provided by heterospecifics, or whether animals can simply use any cue that predicts fitness enhancing conditions, including those provided by heterospecifics. To determine how freely social information travels across species boundaries, we trained bumblebees (Bombus terrestris) to learn to use cues provided by conspecifics and heterospecific honey bees (Apis mellifera) to locate valuable floral resources. We found that heterospecific demonstrators did not differ from conspecifics in the extent to which they guided observers'' choices, whereas various types of inorganic visual cues were consistently less effective than conspecifics. This was also true in a transfer test where bees were confronted with a novel flower type. However, in the transfer test, conspecifics were slightly more effective than heterospecific demonstrators. We then repeated the experiment with entirely naïve bees that had never foraged alongside conspecifics before. In this case, heterospecific demonstrators were equally efficient as conspecifics both in the initial learning task and the transfer test. Our findings demonstrate that social learning is not a unique process limited to conspecifics and that through associative learning, interspecifically sourced information can be just as valuable as that provided by conspecific individuals. Furthermore the results of this study highlight potential implications for understanding competition within natural pollinator communities.  相似文献   

8.
Recent research suggests that genetic diversity in plant populations can shape the diversity and abundance of consumer communities. We tested this hypothesis in a field experiment by manipulating patches of Evening Primrose ( Oenothera biennis ) to contain one, four or eight plant genotypes. We then surveyed 92 species of naturally colonizing arthropods. Genetically diverse plant patches had 18% more arthropod species, and a greater abundance of omnivorous and predacious arthropods, but not herbivores, compared with monocultures. The effects of genotypic diversity on arthropod communities were due to a combination of interactive and additive effects among genotypes within genetically diverse patches. Greater genetic diversity also led to a selective feedback, as mean genotype fitness was 27% higher in diverse patches than in monocultures. A comparison between our results and the literature reveals that genetic diversity and species diversity can have similar qualitative and quantitative effects on arthropod communities. Our findings also illustrate the benefit of preserving genetic variation to conserve species diversity and interactions within multitrophic communities.  相似文献   

9.
10.
In this review, I consider the contribution that common evening primrose (Oenothera biennis) has made towards integrating the ecology, evolution and genetics of species interactions. Oenothera biennis was among the earliest plant models in genetics and cytogenetics and it played an important role in the modern synthesis of evolutionary biology. More recently, population and ecological genetics approaches have provided insight into the patterns of genetic variation within and between populations, and how a combination of abiotic and biotic factors maintain and select on heritable variation within O. biennis populations. From an ecological perspective, field experiments show that genetic variation and evolution within populations can have cascading effects throughout communities. Plant genotype affects the preference and performance of individual arthropod populations, as well as the composition, biomass, total abundance and diversity of arthropod species on plants. A combination of experiments and simulation models show that natural selection on specific plant traits can drive rapid ecological changes in these same community variables. At the patch level, increasing genotypic diversity leads to a greater abundance and diversity of omnivorous and predaceous arthropods, which is also associated with increased biomass and fecundity of plants in genetically diverse patches. Finally, in questioning whether a community genetics perspective is needed in biology, I review several multifactorial experiments which show that plant genotype often explains as much variation in community variables as other ecological factors typically identified as most important in ecology. As a whole, research in the O. biennis system has contributed to a more complete understanding of the dynamic interplay between ecology, evolution and genetics.  相似文献   

11.
Plant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4‐year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine‐species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.  相似文献   

12.
McArt SH  Cook-Patton SC  Thaler JS 《Oecologia》2012,168(4):1013-1021
Biodiversity is quantified via richness (e.g., the number of species), evenness (the relative abundance distribution of those species), or proportional diversity (a combination of richness and evenness, such as the Shannon index, H′). While empirical studies show no consistent relationship between these aspects of biodiversity within communities, the mechanisms leading to inconsistent relationships have received little attention. Here, using common evening primrose (Oenothera biennis) and its associated arthropod community, we show that relationships between arthropod richness, evenness, and proportional diversity are altered by plant genotypic richness. Arthropod richness increased with O. biennis genotypic richness due to an abundance-driven accumulation of species in response to greater plant biomass. Arthropod evenness and proportional diversity decreased with plant genotypic richness due to a nonadditive increase in abundance of a dominant arthropod, the generalist florivore/omnivore Plagiognathas politus (Miridae). The greater quantity of flowers and buds produced in polycultures—which resulted from positive complementarity among O. biennis genotypes—increased the abundance of this dominant insect. Using choice bioassays, we show that floral quality did not change in plant genotypic mixtures. These results elucidate mechanisms for how plant genotypic richness can modify relationships between arthropod richness, evenness, and proportional diversity. More broadly, our results suggest that trophic interactions may be a previously underappreciated factor controlling relationships between these different aspects of biodiversity.  相似文献   

13.
Species recognition is an important aspect of an organism''s biology. Here, we consider how parasitoid wasps vary their reproductive decisions when their offspring face intra- and interspecific competition for resources and mates. We use host acceptance and sex ratio behaviour to test whether female Nasonia vitripennis and Nasonia longicornis discriminate between conspecifics and heterospecifics when ovipositing. We tested pairs of conspecific or heterospecific females ovipositing either simultaneously or sequentially on a single host, using strains varying in their recent history of sympatry. Both N. vitripennis and N. longicornis rejected parasitized hosts more often than unparasitized hosts, although females were more likely to superparasitize their own species in the sequential treatment. However, sex ratio behaviour did not vary, suggesting similar responses towards conspecifics and heterospecifics. This contrasts with theory predicting that heterospecifics should not influence sex ratios as their offspring do not influence local mate competition, where conspecifics would. These non-adaptive sex ratios reinforce the lack of adaptive kin discrimination in N. vitripennis and suggest a behavioural constraint. Discrimination between closely related species is therefore context dependent in Nasonia. We suggest that isolating mechanisms associated with the speciation process have influenced behaviour to a greater extent than selection on sex ratios.  相似文献   

14.
Plant species diversity has long been considered a primary driver of arthropod community structure; however, recent ecological research has demonstrated that plant genotypic diversity can also play a major role in influencing the composition of arthropod communities. Genotypic diversity has already been exploited in some agricultural systems to improve disease control and appears to hold promise for managing some insect species as well. To explore the potential for using genotypic diversity within a crop species to help manage insect pests, we used laboratory-based studies to investigate the influence of wheat (Triticum aestivum L.) genotypic diversity on aphid (Rhopalosiphum padi L.) population growth. Increasingly diverse mixtures of wheat genotypes supported lower aphid populations compared with monocultures and were equally productive as single variety plantings. In the absence of aphids, genotypic mixtures were more productive than monocultures. We also analyzed the volatile organic compounds emitted by non-infested genotypic mixtures to provide insight on a possible mechanism influencing aphid populations. Mixtures and monocultures of wheat emitted the same compounds, but mixtures emitted greater amounts of volatile compounds than monocultures. Our results suggest that genotypic mixtures can strongly influence the growth rate and size of aphid populations; therefore, cultivar mixtures appear to hold good potential to be an effective tool for managing insect pests in crop fields.  相似文献   

15.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

16.
Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics.  相似文献   

17.
Despite potential interactive effects of plant species and genotypic diversity (SD and GD, respectively) on consumers, studies have usually examined these effects separately. We evaluated the individual and combined effects of tree SD and mahogany (Swietenia macrophylla) GD on the arthropod community associated with mahogany. We conducted this study within the context of a tree diversity experiment consisting of 74 plots with 64 saplings/plot. We sampled 24 of these plots, classified as monocultures of mahogany or polycultures of four species (including mahogany). Within each plot type, mahogany was represented by either one or four maternal families. We surveyed arthropods on mahogany and estimated total arthropod abundance and species richness, as well as abundance and richness separately for herbivorous and predatory arthropods. Overall tree SD and mahogany GD had positive effects on total arthropod species richness and abundance on mahogany, and also exerted interactive effects on total species richness (but not abundance). Analyses conducted by trophic level group showed contrasting patterns; SD positively influenced herbivore species richness but not abundance, and did not affect either predator richness or abundance. GD influenced predator species richness but not abundance, and did not influence herbivore abundance or richness. There were interactive effects of GD and SD only for predator species richness. These results provide evidence that intra‐ and inter‐specific plant diversity exert interactive controls on associated consumer communities, and that the relative importance of SD and GD may vary among higher trophic levels, presumably due to differences in the underlying mechanisms or consumer traits.  相似文献   

18.
Females increase their risk of mating with heterospecifics whenthey prefer the traits of conspecifics that overlap with traitsfound in heterospecifics. Xiphophorus pygmaeus females havea strong preference for larger males, which could lead to femalespreferring to mate with heterospecific males; almost all sympatricX. cortezi males are larger than X. pygmaeus males. In thisstudy, we show that X. pygmaeus females preferred the chemicalcues from conspecifics over those of X. cortezi males. However,preference for the chemical cues of conspecifics could not reversethe preference for larger heterospecific males. Only when femaleswere presented with two species-specific cues (vertical barsand chemical cues) did more females spend more time on averagewith the smaller conspecific males. These results support the"backup signal" hypothesis for the evolution of multiple preferences;together, the two species-specific cues increased the accuracywith which females were able to avoid heterospecific males.In addition, the results suggest that in those situations inwhich the traits of conspecifics overlap with traits found inheterospecifics, females can use the assessment of multiplecues to avoid mating with heterospecifics without compromisingtheir preference for the highest-quality conspecific.  相似文献   

19.
The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity.  相似文献   

20.
How plant species diversity affects traits conferring herbivore resistance (e.g., chemical defenses), as well as the mechanisms underlying such effects, has received little attention. One potential mechanism for the effect of diversity on plant defenses is that increased plant growth at high diversity could lead to reduced investment in defenses via growth–defense trade‐offs. We measured tree growth (diameter at breast height) and collected leaves to quantify total phenolics in 2.5‐year‐old plants of six tropical tree species (= 597 plants) in a young experimental plantation in southern Mexico. Selected plants were classified as monocultures or as polycultures represented by mixtures of four of the six species examined. Tree species diversity had a significant negative effect on total phenolics, where polycultures exhibited a 13 percent lower mean concentration than monocultures. However, there was marked variation in the effects of diversity on defenses among tree species, with some species exhibiting strong reductions in phenolic levels in mixtures, whereas others were unresponsive. In addition, tree species diversity had no effect on growth, nor was the negative effect of diversity on chemical defenses mediated by a growth–defense trade‐off. These results demonstrate that tree diversity can alter investment in chemical defenses in long‐lived tree species but that such effect may not always be under strong control by plant endogenous resource allocation trade‐offs. Regardless of the underlying mechanism, these findings have important implications for predicting effects on consumers and ecosystem function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号