首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial classification on the basis of a polyphasic approach was conducted on three poly(3 hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] accumulating bacterial strains that were isolated from samples collected from Malaysian environments; Kulim Lake, Sg. Pinang river and Sg. Manik paddy field. The Gram-negative, rod-shaped, motile, non-sporulating and non-fermenting bacteria were shown to belong to the genus Cupriavidus of the Betaproteobacteria on the basis of their 16S rRNA gene sequence analyses. The sequence similarity value with their near phylogenetic neighbour, Cupriavidus pauculus LMG3413T, was 98.5%. However, the DNA–DNA hybridization values (8–58%) and ribotyping analysis both enabled these strains to be differentiated from related Cupriavidus species with validly published names. The RiboPrint patterns of the three strains also revealed that the strains were genetically related even though they displayed a clonal diversity. The major cellular fatty acids detected in these strains included C15:0 ISO 2OH/C16:1 ω7c, hexadecanoic (16:0) and cis-11-octadecenoic (C18:1 ω7c). Their G+C contents ranged from 68.0  to 68.6 mol%, and their major isoprenoid quinone was Ubiquinone Q-8. Of these three strains, only strain USMAHM13 (= DSM 25816 = KCTC 32390) was discovered to exhibit yellow pigmentation that is characteristic of the carotenoid family. Their assembled genomes also showed that the three strains were not identical in terms of their genome sizes that were 7.82, 7.95 and 8.70 Mb for strains USMAHM13, USMAA1020 and USMAA2-4, respectively, which are slightly larger than that of Cupriavidus necator H16 (7.42 Mb). The average nucleotide identity (ANI) results indicated that the strains were genetically related and the genome pairs belong to the same species. On the basis of the results obtained in this study, the three strains are considered to represent a novel species for which the name Cupriavidus malaysiensis sp. nov. is proposed. The type strain of the species is USMAA1020T (= DSM 19416T = KCTC 32390T).  相似文献   

2.
Failure to identify correctly the milky disease bacteria, Paenibacillus popilliae and Paenibacillus lentimorbus, has resulted in published research errors and commercial production problems. A DNA fingerprinting procedure, using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS) regions, has been shown to easily and accurately identify isolates of milky disease bacteria. Using 34 P. popilliae and 15 P. lentimorbus strains, PCR amplification of different ITS regions produced three DNA fingerprints. For P. lentimorbus phylogenic group 2 strains and for all P. popilliae strains tested, electrophoresis of amplified DNA produced a migratory pattern (i.e., ITS-PCR fingerprint) exhibiting three DNA bands. P. lentimorbus group 1 strains also produced this ITS-PCR fingerprint. However, the fingerprint was phase-shifted toward larger DNA sizes. Alignment of the respective P. popilliae and P. lentimorbus group 1 ITS DNA sequences showed extensive homology, except for a 108 bp insert in all P. lentimorbus ITS regions. This insert occurred at the same location relative to the 23S rDNA and accounted for the phase-shift difference in P. lentimorbus group 1 DNA fingerprints. At present, there is no explanation for this 108 bp insert. The third ITS-PCR fingerprint, produced by P. lentimorbus group 3 strains, exhibited approximately eight DNA bands. Comparison of the three fingerprints of milky disease bacteria to the ITS-PCR fingerprints of other Paenibacillus species demonstrated uniqueness. ITS-PCR fingerprinting successfully identified eight unknown isolates as milky disease bacteria. Therefore, this procedure can serve as a standard protocol to identify P. popilliae and P. lentimorbus.  相似文献   

3.
The streptomycin resistance gene of Pseudomonas syringae pv. papulans Psp36 was cloned into Escherichia coli and used to develop a 500-bp DNA probe that is specific for streptomycin resistance in P. syringae pv. papulans. The probe is a portion of a 1-kb region shared by three different DNA clones of the resistance gene. In Southern hybridizations, the probe hybridized only with DNA isolated from streptomycin-resistant strains of P. syringae pv. papulans and not with the DNA of streptomycin-sensitive strains. Transposon insertions within the region of DNA shared by the three clones resulted in loss of resistance to streptomycin. Colony hybridization of bacteria isolated from apple leaves and orchard soil indicated that 39% of 398 streptomycin-resistant bacteria contained DNA that hybridized to the probe. These included all strains of P. syringae pv. papulans and some other fluorescent pseudomonads and nonfluorescent gram-negative bacteria, but none of the gram-positive bacteria. The same-size restriction fragments hybridized to the probe in P. syringae pv. papulans. Restriction fragment length polymorphism of this region was occasionally observed in strains of other taxonomic groups of bacteria. In bacteria other than P. syringae pv. papulans, the streptomycin resistance probe hybridized to different-sized plasmids and no relationship between plasmid size and taxonomic group or between plasmid size and orchard type, soil association, or leaf association could be detected.  相似文献   

4.
Lei  Guoqing  Dou  Yong  Wan  Wen  Xia  Fei  Li  Rongchun  Ma  Meng  Zou  Dan 《BMC genomics》2012,13(1):1-11

Background

Different Cupriavidus metallidurans strains isolated from metal-contaminated and other anthropogenic environments were genotypically and phenotypically compared with C. metallidurans type strain CH34. The latter is well-studied for its resistance to a wide range of metals, which is carried for a substantial part by its two megaplasmids pMOL28 and pMOL30.

Results

Comparative genomic hybridization (CGH) indicated that the extensive arsenal of determinants involved in metal resistance was well conserved among the different C. metallidurans strains. Contrary, the mobile genetic elements identified in type strain CH34 were not present in all strains but clearly showed a pattern, although, not directly related to a particular biotope nor location (geographical). One group of strains carried almost all mobile genetic elements, while these were much less abundant in the second group. This occurrence was also reflected in their ability to degrade toluene and grow autotrophically on hydrogen gas and carbon dioxide, which are two traits linked to separate genomic islands of the Tn4371-family. In addition, the clear pattern of genomic islands distribution allowed to identify new putative genomic islands on chromosome 1 and 2 of C. metallidurans CH34.

Conclusions

Metal resistance determinants are shared by all C. metallidurans strains and their occurrence is apparently irrespective of the strain's isolation type and place. Cupriavidus metallidurans strains do display substantial differences in the diversity and size of their mobile gene pool, which may be extensive in some (including the type strain) while marginal in others.  相似文献   

5.
The genotypic relationships established by DNA/DNA hybridization in vitro confirm the results obtained by earlier phenotypic analyses of certain vibrio-like marine bacteria. These strains are closely related to the species Photobacterium fischeri, and do not belong to the genus Vibrio. The group of marine, vibrio-like bacteria that require Na+ for growth is genotypically very heterogeneous.  相似文献   

6.
A 16S rRNA-targeted probe was designed and validated in order to quantify the number of uncultured Ruminococcus obeum-like bacteria by fluorescent in situ hybridization (FISH). These bacteria have frequently been found in 16S ribosomal DNA clone libraries prepared from bacterial communities in the human intestine. Thirty-two reference strains from the human intestine, including a phylogenetically related strain and strains of some other Ruminococcus species, were used as negative controls and did not hybridize with the new probe. Microscopic and flow cytometric analyses revealed that a group of morphologically similar bacteria in feces did hybridize with this probe. Moreover, it was found that all hybridizing cells also hybridized with a probe specific for the Clostridium coccoides-Eubacterium rectale group, a group that includes the uncultured R. obeum-like bacteria. Quantification of the uncultured R. obeum-like bacteria and the C. coccoides-E. rectale group by flow cytometry and microscopy revealed that these groups comprised approximately 2.5 and 16% of the total community in fecal samples, respectively. The uncultured R. obeum-like bacteria comprise about 16% of the C. coccoides-E. rectale group. These results indicate that the uncultured R. obeum-like bacteria are numerically important in human feces. Statistical analysis revealed no significant difference between the microscopic and flow cytometric counts and the different feces sampling times, while a significant host-specific effect on the counts was observed. Our data demonstrate that the combination of FISH and flow cytometry is a useful approach for studying the ecology of uncultured bacteria in the human gastrointestinal tract.  相似文献   

7.
DNA homologies at 65°C in 0.14 phosphate buffer, pH 6.8, were determined between 24 strains ofRhizobium capable of nodulatingLeucaena leucocephala and fourRhizobium reference strains. Twenty-one strains (88%) were placed in one of four DNA homology groups. The mean relative homology within a group was 65%, while the mean relative homology between groups was 20%. Thermal melting points for reassociated DNA (ΔTm(e) values) were also measured. The lack of DNA homology between groups indicates that several very different populations of bacteria are capable of nodulating and fixing nitrogen with leucaena.  相似文献   

8.
Gram-negative, rod-shaped bacteria from the soil of white clover-ryegrass pastures were screened for their ability to nodulate white clover (Trifolium repens) cultivar Grasslands Huia and for DNA homology with genomic DNA from Rhizobium leguminosarum biovar trifolii ICMP2668 (NZP582). Of these strains, 3.2% were able to hybridize with strain ICMP2668 and nodulate white clover and approximately 19% hybridized but were unable to nodulate. Strains which nodulated but did not hybridize with strain ICMP2668 were not detected. DNA from R. leguminosarum biovar trifolii (strain PN165) cured of its symbiotic (Sym) plasmid and a specific nod probe were used to show that the relationship observed was usually due to chromosomal homology. Plasmid pPN1, a cointegrate of the broad-host-range plasmid R68.45 and a symbiotic plasmid pRtr514a, was transferred by conjugation to representative strains of nonnodulating, gram-negative, rod-shaped soil bacteria. Transconjugants which formed nodules were obtained from 6 of 18 (33%) strains whose DNA hybridized with that of PN165 and 1 of 9 (11%) strains containing DNA which did not hybridize with that of PN165. The presence and location of R68.45 and nod genes was confirmed in transconjugants from three of the strains which formed nodules. Similarly, a pLAFR1 cosmid containing nod genes from a derivative of R. leguminosarum biovar trifolii NZP514 formed nodules when transferred to soil bacteria.  相似文献   

9.
Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.  相似文献   

10.
Depending on speciation, U environmental contamination may be spread through the environment or inversely restrained to a limited area. Induction of U precipitation via biogenic or non-biogenic processes would reduce the dissemination of U contamination. To this aim U oxidation/reduction processes triggered by bacteria are presently intensively studied. Using X-ray absorption analysis, we describe in the present article the ability of Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris, highly resistant to a variety of metals and metalloids or to organic pollutants, to withstand high concentrations of U and to immobilize it either through biosorption or through reduction to non-uraninite U(IV)-phosphate or U(IV)-carboxylate compounds. These bacterial strains are thus good candidates for U bioremediation strategies, particularly in the context of multi-pollutant or mixed-waste contaminations.  相似文献   

11.
12.
A series of 13 phosphonium salts on the basis of pyridoxine derivatives were synthesized and their antibacterial activity against clinically relevant strains was tested in vitro. All compounds were almost inactive against gram-negative bacteria and exhibited structure-dependent activity against gram-positive bacteria. A crucial role of ketal protection group in phosphonium salts for their antibacterial properties was demonstrated. Among synthesized compounds 5,6-bis[triphenylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (compound 20) was found to be the most effective towards Staphylococcus aureus and Staphylococcus epidermidis strains (MIC 5 μg/ml). The mechanism of antibacterial activity of this compound probably involves cell penetration and interaction with genomic and plasmid DNA.  相似文献   

13.
The randomly amplified polymorphic DNA (RAPD) method was used to investigate the genetic diversity in Xanthomonas cynarae, which causes bacterial bract spot disease of artichoke. This RAPD analysis was also intended to identify molecular markers characteristic of this species, in order to develop PCR-based markers which can be used to detect this pathogenic bacterium in artichoke fields. Among the 340 RAPD primers tested, 40 were selected on their ability to produce reproducible and reliable fingerprints in our genetic background. These 40 primers produced almost similar patterns for the 37 X. cynarae strains studied, different from the fingerprints obtained for other Xanthomonas species and other xanthomonad-like bacteria isolated from artichoke leaves. Therefore, X. cynarae strains form a homogeneous genetic group. However, a little DNA polymorphism within this species was observed and the collection of X. cynarae isolates was divided into two groups (one containing three strains, the second one including all other strains). Out of seven RAPD markers characteristic of X. cynarae that were cloned, four did not hybridize to the genomic DNA of strains belonging to other Xanthomonas species. These four RAPD markers were converted into PCR markers (specific characterized amplified regions [SCARs]); they were sequenced, and a PCR primer pair was designed for each of them. Three derived SCARs are good candidates to develop PCR-based tests to detect X. cynarae in artichoke fields.  相似文献   

14.
Fourteen strains of fructophilic lactic acid bacteria were isolated from fructose-rich niches, flowers, and fruits. Phylogenetic analysis and BLAST analysis of 16S rDNA sequences identified six strains as Lactobacillus kunkeei, four as Fructobacillus pseudoficulneus, and one as Fructobacillus fructosus. The remaining three strains grouped within the Lactobacillus buchneri phylogenetic subcluster, but shared low sequence similarities to other known Lactobacillus spp. The fructophilic strains fermented only a few carbohydrates and fermented d-fructose faster than d-glucose. Based on the growth characteristics, the 14 isolates were divided into two groups. Strains in the first group containing L. kunkeei, F. fructosus, and F. pseudoficulneus grew well on d-fructose and on d-glucose with pyruvate or oxygen as external electron acceptors, but poorly on d-glucose without the electron acceptors. Strains in this group were classified as “obligately” fructophilic lactic acid bacteria. The second group contained three unidentified strains of Lactobacillus that grew well on d-fructose and on d-glucose with the electron acceptors. These strains grew on d-glucose without the electron acceptors, but at a delayed rate. Strains in this group were classified as facultatively fructophilic lactic acid bacteria. All fructophilic isolates were heterofermentative lactic acid bacteria, but “obligately” fructophilic lactic acid bacteria mainly produced lactic acid and acetic acid and very little ethanol from d-glucose. Facultatively fructophilic strains produced lactic acid, acetic acid and ethanol, but at a ratio different from that recorded for heterofermentative lactic acid bacteria. These unique characteristics may have been obtained through adaptation to the habitat.  相似文献   

15.
nodA and nifH phylogenies for Cupriavidus nodule bacteria from native legumes in Texas and Costa Rica grouped all strains into a single clade nested among neotropical Burkholderia strains. Thus, Cupriavidus symbiotic genes were not acquired independently in different regions and are derived from other Betaproteobacteria rather than from alpha-rhizobial donors.  相似文献   

16.
Bacteria inhibitory to fish larval pathogenic bacteria were isolated from two turbot larva rearing farms over a 1-year period. Samples were taken from the rearing site, e.g., tank walls, water, and feed for larvae, and bacteria with antagonistic activity against Vibrio anguillarum were isolated using a replica plating assay. Approximately 19,000 colonies were replica plated from marine agar plates, and 341 strains were isolated from colonies causing clearing zones in a layer of V. anguillarum. When tested in a well diffusion agar assay, 173 strains retained the antibacterial activity against V. anguillarum and Vibrio splendidus. Biochemical tests identified 132 strains as Roseobacter spp. and 31 as Vibrionaceae strains. Partial sequencing of the 16S rRNA gene of three strains confirmed the identification as Roseobacter gallaeciensis. Roseobacter spp. were especially isolated in the spring and early summer months. Subtyping of the 132 Roseobacter spp. strains by randomly amplified polymorphic DNA with two primers revealed that the strains formed a very homogeneous group. Hence, it appears that the same subtype was present at both fish farms and persisted during the 1-year survey. This indicates either a common, regular source of the subtype or the possibility that a particular subtype has established itself in some areas of the fish farm. Thirty-one antagonists were identified as Vibrio spp., and 18 of these were V. anguillarum but not serotype O1 or O2. Roseobacter spp. strains were, in particular, isolated from the larval tank walls, and it may be possible to establish an antagonistic, beneficial microflora in the rearing environment of turbot larvae and thereby limit survival of pathogenic bacteria.  相似文献   

17.
The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.  相似文献   

18.
Dairy propionic acid bacteria, particularly the species Propionibacterium freudenreichii, play a major role in the ripening of Swiss type cheese. Isometric and filamentous bacteriophages infecting P. freudenreichii have previously been isolated from cheese. In order to determine the origin of these bacteriophages, lysogeny of P. freudenreichii was determined by isometric bacteriophage type analysis. The genomic DNA of 76 strains were hybridized with the DNA of nine bacteriophages isolated from Swiss type cheeses, and the DNA of 25 strains exhibited strong hybridization. Three of these strains released bacteriophage particules following UV irradiation (254 nm) or treatment with low concentrations of mitomycin C. A prophage-cured derivative of P. freudenreichii was readily isolated and subsequently relysogenized. Lysogeny was therefore formally demonstrated in P. freudenreichii.  相似文献   

19.
20.
《Gene》1996,174(1):145-150
We have been studying the conjugative transposon Tn5397, originally isolated from the Gram-positive pathogen Clostridium difficile. Physical analysis of this transposon demonstrated that it contained a group II intron. This is the first report of an intron in a conjugative transposon and the first report of a group II intron in Gram-positive bacteria. The intron interrupted a gene in Tn5397 that is almost identical to orf14 from Tn916. DNA hybridisation analysis showed that elements related to Tn5397, containing the group II intron, were present in five other C. difficile strains from different geographical locations suggesting that the element is likely to be widely distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号