首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-frequency Q-band (37 GHz) electron paramagnetic resonance (EPR) dosimetry allows to perform fast (i.e., measurement time <15 min) dose measurements using samples obtained from tooth enamel mini-biopsy procedures. We developed and tested a new procedure for taking tooth enamel biopsy for such dose measurements. Recent experience with EPR dose measurements in Q-band using mini-probes of tooth enamel has demonstrated that a small amount of tooth enamel (2–10 mg) can be quickly obtained from victims of a radiation accident. Accurate dose assessments can further be carried out in a very short time to provide important information for medical treatment. Here, the Q-band EPR dose detection limit for 5 and 10 mg samples is estimated to be 367 and 248 mGy, respectively. These values are comparable to the critical parameters determined for conventional X-band EPR in tooth enamel.  相似文献   

2.
The results of electron paramagnetic resonance (EPR) measurements in irradiated fingernails are presented. In total, 83 samples of different fingernails were studied. Five different groups of samples were selected based on the collection time of fingernail samples, their level of mechanical stress, and the number and size of clippings: (1) recently (<24 h) cut, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed–fresh, controlled); (2) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment (10 min of water soaking, 5 min of drying time) to reduce the mechanical stress caused by cutting the samples, and with rigorous control of size and number of clippings (unstressed–fresh, controlled); (3) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to study, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed–old, controlled); (4) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to the study, irradiated and measured with EPR after application of a special treatment to reduce mechanical stress caused by cut, and with rigorous control of size and number of clippings (unstressed–old, controlled); and (5) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment to reduce the mechanical stress caused by cut, and without rigorous control of size and number of clippings (unstressed–fresh, uncontrolled). Except for the fifth selected group, variability of the dose dependence inside all groups was found to be not statistically significant, although the variability among the different groups was significant. Comparison of the mean dose dependences obtained for each group allowed selection of key factors responsible for radiation sensitivity (dose response per unit of mass and dose) and the shape of dose dependence in fingernails. The major factor responsible for radiation sensitivity of fingernails was identified as their water content, which can affect radiation sensitivity up to 35%. The major factor responsible for the shape of the radiation sensitivity was identified as the mechanical stress. At a significant level of mechanical stress, the shape of the dose dependence is linear in the studied dose range (<20 Gy), and in lesser-stressed samples it is of an exponential growth including saturation, which depends on the degree of mechanical stress. In view of the findings, recommendations are discussed and presented for the appropriate protocol for EPR dose measurements in fingernails.  相似文献   

3.
4.
Characterizing the biological effects of flattening filter-free (FFF) X-ray beams from linear accelerators is of importance, due to their increasing clinical availability. The purpose of this work is to determine whether in vitro cell survival is affected by the higher dose-per-pulse present in FFF beams in comparison with flattened X-ray beams. A Varian TrueBeam® linear accelerator was used to irradiate the T98G, V79-4 and U87-MG cell lines with a single fraction of 5 Gy or 10 Gy doses of X-rays. Beams with energies of 6 MegaVolt (MV), 6 MV FFF and 10 MV FFF were used, with doses-per-pulse as measured at the monitor chamber of 0.28, 0.78 and 1.31 mGy/pulse for 6 MV, 6 MV FFF and 10 MV FFF, respectively. The dose delivered to each Petri dish was verified by means of ionization chamber measurements. No statistically significant effects on survival fraction were observed for any of the cell lines considered, either as a function of dose-per-pulse, average dose rate or total dose delivered. Biological effects of higher instantaneous rates should not be excluded on the basis of in vitro experimental results such as the ones presented in this work. The next step toward an assessment of the biological impact of FFF beams will require in vivo studies.  相似文献   

5.
The most significant problem of electron paramagnetic resonance (EPR) fingernail dosimetry is the presence of two signals of non-radiation origin that overlap the radiation-induced signal (RIS), making it almost impossible to perform dose measurements below 5 Gy. Historically, these two non-radiation components were named mechanically induced signal (MIS) and background signal (BKS). In order to investigate them in detail, three different methods of MIS and BKS mutual isolation have been developed and implemented. After applying these methods, it is shown here that fingernail tissue, after cut, can be modeled as a deformed sponge, where the MIS and BKS are associated with the stress from elastic and plastic deformations, respectively. A sponge has a unique mechanism of mechanical stress absorption, which is necessary for fingernails in order to perform its everyday function of protecting the fingertips from hits and trauma. Like a sponge, fingernails are also known to be an effective water absorber. When a sponge is saturated with water, it tends to restore to its original shape, and when it loses water, it becomes deformed again. The same happens to fingernail tissue. It is proposed that the MIS and BKS signals of mechanical origin be named MIS1 and MIS2 for MISs 1 and 2, respectively. Our suggested interpretation of the mechanical deformation in fingernails gives also a way to distinguish between the MIS and RIS. The results obtained show that the MIS in irradiated fingernails can be almost completely eliminated without a significant change to the RIS by soaking the sample for 10 min in water. The proposed method to measure porosity (the fraction of void space in spongy material) of the fingernails gave values of 0.46–0.48 for three of the studied samples. Existing results of fingernail dosimetry have been obtained on mechanically stressed samples and are not related to the “real” in vivo dosimetric properties of fingernails. A preliminary study of these properties of pre-soaked (unstressed) fingernails has demonstrated their significant difference from fingernails stressed by cut. They show a higher stability signal, a less intensive non-radiation component, and a nonlinear dose dependence. The findings in this study set the stage for understanding fingernail EPR dosimetry and doing in vivo measurements in the future.  相似文献   

6.
The management of radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation will rely critically on the availability and use of suitable biodosimetry methods. In vivo electron paramagnetic resonance (EPR) tooth dosimetry has a number of valuable and unique characteristics and capabilities that may help enable effective triage. We have produced a prototype of a deployable EPR tooth dosimeter and tested it in several in vitro and in vivo studies to characterize the performance and utility at the state of the art. This report focuses on recent advances in the technology, which strengthen the evidence that in vivo EPR tooth dosimetry can provide practical, accurate, and rapid measurements in the context of its intended use to help triage victims in the event of an improvised nuclear device. These advances provide evidence that the signal is stable, accurate to within 0.5 Gy, and can be successfully carried out in vivo. The stability over time of the radiation-induced EPR signal from whole teeth was measured to confirm its long-term stability and better characterize signal behavior in the hours following irradiation. Dosimetry measurements were taken for five pairs of natural human upper central incisors mounted within a simple anatomic mouth model that demonstrates the ability to achieve 0.5 Gy standard error of inverse dose prediction. An assessment of the use of intact upper incisors for dose estimation and screening was performed with volunteer subjects who have not been exposed to significant levels of ionizing radiation and patients who have undergone total body irradiation as part of bone marrow transplant procedures. Based on these and previous evaluations of the performance and use of the in vivo tooth dosimetry system, it is concluded that this system could be a very valuable resource to aid in the management of a massive radiological event.  相似文献   

7.
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.  相似文献   

8.
In the present study naturally loose deciduous molars were investigated. The feasibility of separating enamel from small size molars was analysed. EPR spectrum parameters of whole molars and separated enamel only were evaluated before and after laboratory irradiation. The Electron paramagnetic resonance (EPR) signal amplitudes of CO 2 and native signals were determined by spectrum deconvolution, as a function of radiation dose in the range 0.1–10 Gy. A detection threshold of absorbed dose from deciduous molars of 198 and 21 mGy is estimated for massive (that contained both enamel and dentine) and grainy samples (that contained enamel only), respectively. The elimination of the organic material from the massive deciduous samples reduced the mean bias dose for the native signal from 90±18 to 34±13 mGy. A decay of the background signal within 2 weeks after irradiation was found, while the dosimetric signal was stable before and after the irradiation process. The presented results suggest deciduous teeth to be suitable for retrospective dose assessment. To get reasonable dose estimates, however, any organic material must be eliminated, and the measurements should be performed 2 weeks after the chemical and mechanical preparation and the irradiation process are done.N. El-Faramawy: On leave from Department of Physics, Faculty of Science, Ain Shams University, 65511 Abbassia, Cario, Egypt.  相似文献   

9.
In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not significantly influence the dosimetry for early dose assessment.  相似文献   

10.
The Mayak worker cohort is one of the major sources of information on health risks due to protracted exposures to plutonium and external ionizing radiation. Electron paramagnetic resonance (EPR) measurements in tooth enamel in combination with personal dose monitoring can help to improve external dose assessment for this cohort. Here, the occupational lifetime external exposure was evaluated individually for 44 nuclear workers of three plants of the Mayak Production Association by EPR measurements of absorbed doses in collected tooth enamel samples. Analysis included consideration of individual background doses in enamel and dose conversion coefficients specific for photon spectra at selected work areas. As a control, background doses were assessed for various age groups by EPR measurements on teeth from non-occupationally exposed Ozyorsk residents. Differences in occupational lifetime doses estimated from the film badges and from enamel for the Mayak workers were found to depend on the type of film badge and the selected plant. For those who worked at the radiochemical processing plant and who were monitored with IFK film badges, the dose was on average 570 mGy larger than estimated from the EPR measurements. However, the average difference was found to be only −4 and 6 mGy for those who were monitored with IFKU film badges and worked at the reactor and the isotope production plant respectively. The discrepancies observed in the dose estimates are attributed to a bias in film badge evaluation.N. El-Faramawy: On leave from Department of Physics, Faculty of Science, Ain Shams University, 65511 Abbassia, Cairo, Egypt.  相似文献   

11.
Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual’s exposure in a radiobiological event and thus would have utility for both triage and injury assessment.  相似文献   

12.
This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogeneous batch of glass and were stored in similar setting; for group B (formed by eight participants), samples came from different smart phones and stored in different settings of light and temperature. The calibration curves determined by the participants of group A had a small error and a critical level in the 0.37–0.40-Gy dose range, whereas the curves determined by the participants of group B were more scattered and led to a critical level in the 1.3–3.2-Gy dose range for six participants out of eight. Group A were able to assess the dose within 20 % for the lowest doses (<1.5 Gy) and within 5 % for the highest doses. For group B, only the highest blind dose could be evaluated in a reliable way because of the high critical values involved. The results from group A are encouraging, whereas the results from group B suggest that the influence of environmental conditions and the intervariability of samples coming from different smart phones need to be further investigated. An alongside conclusion is that the protocol was easily transferred to participants making a network of laboratories in case of a mass casualty event potentially feasible.  相似文献   

13.

Aim

When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry.

Background

The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.1,2 Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses.

Materials and methods

Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.2

Results

Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition.

Conclusion

Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed.  相似文献   

14.
Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min−1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this “MetHb + SHb + HbCO”-derivatives-based absorbed dose relationship showed a high accuracy. It is concluded that simultaneous determination of MetHb, SHb and HbCO, by multi-component spectrophotometry provides a quick, simple, sensitive, accurate, stable and inexpensive biological indicator for the early assessment of the absorbed dose in mice.  相似文献   

15.

Otoliths are organs used by fish for hearing and keeping balance. They consist of biogenic crystals of hydroxyapatite and do not contain any living cells. Upon exposure to ionizing radiation, otolith hydroxyapatite accumulates radiation-induced stable CO2? radicals whose amount is proportional to absorbed dose. In electron paramagnetic resonance (EPR) dosimetry, carbonate ions are registered and, hence, the total accumulated dose in the fish otolith can be quantified. Therefore, otoliths can be used as individual fish dosimeters to support radiobiological and radioecological studies. An important aspect of otolith-based EPR dosimetry on fish from contaminated water bodies is the potential presence of bone-seeking 90Sr. Consequently, cumulative absorbed doses measured with EPR in otoliths may reflect the superposition of internal exposure to 90Sr/90Y and external exposure due to radionuclides circulating in soft tissue of the fish as well as due to environmental contamination. The objective of the present study was to develop a method that allows for an assessment of the contribution of 90Sr to the total dose in otolith. The method has been tested using otoliths from seven fish taken from reservoirs located in the Southern Urals contaminated with radionuclides including 90Sr. It has been shown that dose to otoliths is largely determined by 90Sr in the hydroxyapatite. The internal dose component can be calculated using activity concentration-to-dose conversion factors, which vary slightly in the range of 2.0–2.8?×?10–3 Gy year?1 per Bq g?1 depending on fish species and age. Internal doses to fish from water bodies with different levels of 90Sr contamination were calculated in the range from 2 mGy to?~?200 Gy. External dose contribution was derived for two fish only to be about 100 and 40 Gy. It is concluded that EPR dosimetry on fish otoliths is a promising tool when external exposure prevails or is comparable to internal exposure due to 90Sr.

  相似文献   

16.
In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960.  相似文献   

17.
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 ± 6.6 for Sham, 7.8 ± 4.1 for Beam only, 4.4 ± 5.6 for BPA-BNCT I and 0.45 ± 0.20 for BPA-BNCT II; tumor nodule weight was 750 ± 480 mg for Sham, 960 ± 620 mg for Beam only, 380 ± 720 mg for BPA-BNCT I and 7.3 ± 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.  相似文献   

18.
In the context of accidental or intentional radiation exposures (nuclear terrorism), it is essential to separate rapidly those individuals with substantial exposures from those with exposures that do not constitute an immediate threat to health. Low-frequency electron paramagnetic resonance (EPR) spectroscopy provides the potential advantage of making accurate and sensitive measurements of absorbed radiation dose in teeth without removing the teeth from the potential victims. Up to now, most studies focused on the dose-response curves obtained for gamma radiation. In radiation accidents, however, the contribution of neutrons to the total radiation dose should not be neglected. To determine how neutrons contribute to the apparent dose estimated by EPR dosimetry, extracted whole human teeth were irradiated at the SILENE reactor in a mixed neutron and gamma-radiation field simulating criticality accidents. The teeth were irradiated in free air as well as in a paraffin head phantom. Lead screens were also used to eliminate to a large extent the contribution of the gamma radiation to the dose received by the teeth. The EPR signals, obtained with a low-frequency (1.2 GHz) spectrometer, were compared to dosimetry measurements at the same location. The contribution of neutrons to the EPR dosimetric signal was negligible in the range of 0 to 10 Gy and was rather small (neutron/gamma-ray sensitivity in the range 0-0.2) at higher doses. This indicates that the method essentially provides information on the dose received from the gamma-ray component of the radiation.  相似文献   

19.
Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.  相似文献   

20.
This paper presents results of 131I thyroid activity measurements in 30 members of the nuclear medicine personnel of the Department of Endocrinology and Nuclear Medicine Holy Cross Cancer Centre in Kielce, Poland. A whole-body spectrometer equipped with two semiconductor gamma radiation detectors served as the basic research instrument. In ten out of 30 examined staff members, the determined 131I activity was found to be above the detection limit (DL = 5 Bq of 131I in the thyroid). The measured activities ranged from (5 ± 2) Bq to (217 ± 56) Bq. The highest activities in thyroids were detected for technical and cleaning personnel, whereas the lowest values were recorded for medical doctors. Having measured the activities, an attempt has been made to estimate the corresponding annual effective doses, which were found to range from 0.02 to 0.8 mSv. The highest annual equivalent doses have been found for thyroid, ranging from 0.4 to 15.4 mSv, detected for a cleaner and a technician, respectively. The maximum estimated effective dose corresponds to 32% of the annual background dose in Poland, and to circa 4% of the annual limit for the effective dose due to occupational exposure of 20 mSv per year, which is in compliance with the value recommended by the International Commission on Radiological Protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号