首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the oxidative state of chylomicron remnants (CMR) on the mechanisms of their uptake and induction of lipid accumulation by macrophages derived from the human monocyte cell line, THP-1, during foam cell formation was investigated using chylomicron-remnant-like particles (CRLPs) at 3 different levels of oxidation. The oxidative state of CRLPs was varied by exposure to CuSO(4) (oxCRLPs) or incorporation of the antioxidant, probucol (pCRLPs) into the particles. oxCRLPs caused significantly less accumulation of triacylglycerol in the macrophages than CRLPs, and their rate of uptake was lower, while pCRLPs caused more lipid accumulation and were taken up faster. Uptake of all 3 types of particles was inhibited to a similar extent when entry via the low density lipoprotein (LDL) receptor related protein (80-90%), LDL receptor (-30-40%), CD36 (-40%) and phagocytosis (-35-40%) was blocked using lactoferrin, excess LDL, anti-CD36 and cytochalasin D, respectively, but blocking scavenger receptors-A or -B1 using poly inosinic acid or excess HDL had no effect. These findings show that oxidation of CRLPs lowers their rate of uptake and induction of lipid accumulation in macrophages. However, oxidation does not change the main pathways of internalisation of CRLPs into THP-1 macrophages, which occur mainly via the LRP with some contribution from the LDLr, while CD36 and phagocytosis have only a minor role, regardless of the oxidative state of the particles. Thus, the effects of CMR oxidation on foam cell formation contrast sharply with those of LDL oxidation and this may be important in the role of dietary oxidized lipids and antioxidants in modulating atherosclerosis.  相似文献   

2.
In light of recent conflicting results regarding the antiatherogenic properties of the paraoxonase (PON) multigene family we have reexamined these properties in vitro. The abilities of recombinant human PON1 and PON3 to retard LDL oxidation, prevent macrophage oxidative stress, and promote macrophage cholesterol efflux were investigated. Both PON1 and PON3 retarded the oxidation of LDL; PON1 was significantly more efficient (50 and 100% at 20 microg PON3 and PON1, respectively (P<0.001)). Neither PON1 nor PON3 were able to prevent macrophage oxidative stress; however, both were able to retard macrophage-induced LDL oxidation (100 and 50% at 20 microg/ml respectively for PON1 and PON3, P<0.05). PON3 promoted macrophage cholesterol efflux (30% at 40 microg/ml, P<0.01); however, PON1 was found to be cytotoxic to the macrophages derived from the human monocyte THP-1 cell line. In conclusion using recombinant proteins we have been able to confirm some but not all of the antiatherosclerotic properties attributed to human PON1 and PON3 but have also discovered a novel cytotoxicity of PON1 toward macrophages derived from the human monocytic THP-1 cell line.  相似文献   

3.
The rate of uptake of oxidized low density lipoprotein (LDL) by mouse peritoneal macrophages is similar to that of acetyl LDL; but only approximately 50% of the internalized oxidized LDL is ultimately degraded, in contrast to the near-complete degradation seen with acetyl LDL. The objectives of this study were to determine if this was due to increased surface binding of oxidized LDL, different uptake pathways for oxidized LDL and acetyl LDL, lysosomal dysfunction caused by oxidized LDL, or resistance of oxidized LDL to hydrolysis by lysosomal proteinases. LDL binding studies at 4 degrees C showed that the increased cell association with oxidized LDL could not be explained by differences in cell-surface binding. Immunofluorescence microscopy confirmed intracellular accumulation of apoB-immunoreactive material in macrophages incubated with oxidized LDL, but not with acetyl LDL. The scavenger receptor ligand polyinosinic acid inhibited both the cell association and degradation of oxidized LDL in macrophages by greater than 75%, suggesting a common uptake pathway for degraded LDL and nondegraded LDL. Studies in THP-1 cells also did not reveal more than one specific uptake pathway for oxidized LDL. LDL derivatized by incubation with oxidized arachidonic acid (under conditions that prevented oxidation of the LDL itself) showed inefficient degradation, similar to oxidized LDL. When macrophages were incubated with oxidized LDL together with acetyl 125I-LDL, the acetyl LDL was degraded normally, excluding lysosomal dysfunction as the explanation for the accumulation of oxidized LDL. Generation of trichloroacetic acid-soluble products from oxidized 125I-LDL by exposure to cathepsins B and D was less than that observed with native 125I-LDL. LDL modified by exposure to reactive products derived from oxidized arachidonic acid was also degraded more slowly than native 125I-LDL by cathepsins. In contrast, acetyl 125I-LDL was degraded more rapidly by cathepsins than native 125I-LDL, and aggregated LDL and malondialdehyde-modified LDL were degraded at the same rate as native 125I-LDL. It is concluded that the intracellular accumulation of oxidized LDL in macrophages can be explained at least in part by the resistance of oxidatively modified apolipoprotein B to cathepsins. This resistance to cathepsins does not appear to be due to aggregation of oxidized LDL, but may be a consequence of modification of apolipoprotein B by lipid peroxidation products.  相似文献   

4.
Oxidatively modified low-density lipoprotein (LDL) has been found in vivo, and oxidized LDL (oxLDL) could bind to scavenger receptors, leading to foam cell formation. Macrophages bear a number of different scavenger receptors for oxLDL, and macrophages of different origins may have a different scavenger receptor repertoire. In addition, LDL oxidized to different degrees may differ in the ability to bind macrophage scavenger receptors. In this study, we characterized the patterns of the binding and uptake of differently oxidized LDL in mouse peritoneal macrophages (MPM) and human THP-1 macrophages, and the influence of negative charge and oxidation-specific epitopes in oxLDL on these processes. Thresholds of increased binding and uptake in MPM were found when LDL was oxidized to the degrees with a relative electrophoretic mobility (REM) of 2.6 (minor threshold) and 3.0 (major threshold), corresponding to 49 and 57%, respectively, of the loss of free amino groups in these oxLDL. There was no threshold for the binding of oxLDL to THP-1 macrophages, while for uptake, a major threshold with REM of 3.0 (57% free amino groups lost) was found. The presence of the F(ab')(2) fragments of the monoclonal antibody OB/04, which was raised against copper-oxidized LDL, led to the reduction of the binding and uptake, respectively, of Eu(3+)-oxLDL (REM:3.6) in MPM by 31 and 29%, and by 19 and 22% in THP-1 macrophages. It is concluded that LDL oxidized to different degrees binds differently to macrophages, and the patterns of binding and uptake are different for MPM and human THP-1 macrophages. Both, the negative charge and the oxidation-specific epitopes of oxLDL are involved in these processes.  相似文献   

5.
The presence of HOCl-modified epitopes inside and outside monocytes/macrophages and the presence of HOCl-modified apolipoprotein B in atherosclerotic lesions has initiated the present study to identify scavenger receptors that bind and internalize HOCl-low density lipoprotein (LDL). The uptake of HOCl-LDL by THP-1 macrophages was not saturable and led to cholesterol/cholesteryl ester accumulation. HOCl-LDL is not aggregated in culture medium, as measured by dynamic light scattering experiments, but internalization of HOCl-LDL could be inhibited in part by cytochalasin D, a microfilament disrupting agent. This indicates that HOCl-LDL is partially internalized by a pathway resembling phagocytosis-like internalization (in part by fluid-phase endocytosis) as measured with [14C]sucrose uptake. In contrast to uptake studies, binding of HOCl-LDL to THP-1 cells at 4 degrees C was specific and saturable, indicating that binding proteins and/or receptors are involved. Competition studies on THP-1 macrophages showed that HOCl-LDL does not compete for the uptake of acetylated LDL (a ligand to scavenger receptor class A) but strongly inhibits the uptake of copper-oxidized LDL (a ligand to CD36 and SR-BI). The binding specificity of HOCl-LDL to class B scavenger receptors could be demonstrated by Chinese hamster ovary cells overexpressing CD36 and SR-BI and specific blocking antibodies. The lipid moiety isolated from the HOCl-LDL particle did not compete for cell association of labeled HOCl-LDL to CD36 or SR-BI, suggesting that the protein moiety of HOCl-LDL is responsible for receptor recognition. Experiments with Chinese hamster ovary cells overexpressing scavenger receptor class A, type I, confirmed that LDL modified at physiologically relevant HOCl concentrations is not recognized by this receptor.  相似文献   

6.
Non-enzymatic glycation of low density lipoprotein (LDL) has been suggested to be responsible for the increase in susceptibility to atherogenesis of diabetic individuals. Although the association of lipid glycation with this process has been investigated, the effect of specific lipid glycation products on LDL metabolism has not been addressed. This study reports that glucosylated phosphatidylethanolamine (Glc-PtdEtn), the major LDL lipid glycation product, promotes LDL uptake and cholesteryl ester (CE) and triacylglycerol (TG) accumulation by THP-1 macrophages. Incubation of THP-1 macrophages at a concentration of 100 micrograms/ml protein LDL specifically enriched (10 nmol/mg LDL protein) with synthetically prepared Glc-PtdEtn resulted in a significant increase in CE and TG accumulation when compared with LDL enriched in non-glucosylated PtdEtn. After a 24-h incubation with LDL containing Glc-PtdEtn, the macrophages contained 2-fold higher CE (10.11 +/- 1.54 micrograms/mg cell protein) and TG (285.32 +/- 4.38 micrograms/mg cell protein) compared with LDL specifically enriched in non-glucosylated PtdEtn (CE, 3.97 +/- 0.95, p < 0.01 and TG, 185.57 +/- 3.58 micrograms/mg cell protein, p < 0.01). The corresponding values obtained with LDL containing glycated protein and lipid were similar to those of LDL containing Glc-PtdEtn (CE, 11.9 +/- 1.35 and TG, 280.78 +/- 3.98 micrograms/mg cell protein). The accumulation of both neutral lipids was further significantly increased by incubating the macrophages with Glc-PtdEtn LDL exposed to copper oxidation. By utilizing the fluorescent probe, 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI), a 1.6-fold increase was seen in Glc-PtdEtn + LDL uptake when compared with control LDL. Competition studies revealed that acetylated LDL is not a good competitor for DiI Glc-PtdEtn LDL (5-6% inhibition), whereas glycated LDL gave an 80% inhibition, and LDL + Glc-PtdEtn gave 93% inhibition of uptake by macrophages. These results indicate that glucosylation of PtdEtn in LDL accounts for the entire effect of LDL glycation on macrophage uptake and CE and TG accumulation and, therefore, the increased atherogenic potential of LDL in hyperglycemia.  相似文献   

7.
The effects of low-density lipoprotein (LDL) and chylomicron remnants on lipid accumulation in human monocyte-derived macrophages (HMDMs) and in macrophages derived from the human monocyte cell line THP-1 were compared. The HMDMs or THP-1 macrophages were incubated with LDL, oxidized LDL (oxLDL), chylomicron remnant-like particles (CMR-LPs), or oxidized CMR-LPs (oxCMR-LPs), and the amount and type of lipid accumulated were determined. As expected, the lipid content of both cell types was increased markedly by oxLDL but not LDL, and this was due to a rise in cholesterol, cholesteryl ester (CE), and triacylglycerol (TG) levels. In contrast, both CMR-LPs and oxCMR-LPs caused a considerable increase in cellular lipid in HMDMs and THP-1 macrophages, but in this case there was a greater rise in the TG than in the cholesterol or CE content. Lipid accumulation in response to oxLDL, CMR-LPs, and oxCMR-LPs was prevented by the ACAT inhibitor CI976 in HMDMs but not in THP-1 macrophages, where TG levels remained markedly elevated. The rate of incorporation of [(3)H]oleate into CE and TG in THP-1 macrophages was increased by oxLDL, CMR-LPs, and oxCMR-LPs, but incorporation into TG was increased to a greater extent with CMR-LPs and oxCMR-LPs compared with oxLDL. These results demonstrate that both CMR-LPs and oxCMR-LPs cause lipid accumulation in human macrophages comparable to that seen with oxLDL and that oxidation of the remnant particles does not enhance this effect. They also demonstrate that a greater proportion of the lipid accumulated in response to CMR-LPs compared with oxLDL is TG rather than cholesterol or CE and that this is associated with a higher rate of TG synthesis. This study, therefore, provides further evidence to suggest that chylomicron remnants have a role in foam cell formation that is distinct from that of oxLDL.  相似文献   

8.
Macrophages are intimately involved in the pathogenesis of atherosclerotic diseases. A key feature of this process is their uptake of various lipoproteins and subsequent transformation to foam cells. Since lipoprotein lipase (LPL) is believed to play a role in foam cell formation, we investigated if endogenously produced proteoglycans (PGs) affect the release of this enzyme from macrophages. The human leukaemic cell line THP-1 which differentiates into macrophages by treatment with phorbol ester (phorbol 12-myristate 13-acetate) served as a model. The differentiation of THP-1 macrophages promoted the release of PGs into the cell medium which caused the detachment of LPL activity from the cell surface, and prevented LPL re-uptake and inactivation. These PGs were mainly composed of chondroitin sulfate type and exerted a heparin-like effect on LPL release. LPL is known to increase the cell association of lipoproteins by the well known bridging function. Exogenous bovine LPL at a concentration of 1 microg/ml enhanced low density lipoprotein (LDL)-binding 10-fold. Endogenously produced PGs reduced LPL-mediated binding of LDL. It is proposed that the differentiation-dependent increase in the release of PGs interferes with binding of LPL and reduces lipoprotein-binding to macrophages.  相似文献   

9.
In the vessel wall, macrophages are among the cells that upon activation contribute to the atherosclerotic process. Low density lipoproteins (LDL) can mediate this activation but only after enzymatic or oxidative modification. Lipoprotein(a) (Lp(a)) is an LDL variant that has been shown to have an atherogenic potential by no clearly established mechanisms. In the present study we examined whether native Lp(a) can activate macrophages and, if so, identify the structural elements involved in this action. For this purpose, we utilized human THP-1 macrophages, prepared by treating THP-1 monocytes with phorbol ester, and we exposed them to Lp(a) and its two derivatives, apo(a)-free LDL (Lp(a-)) and free apo(a). We also studied apo(a) fragments, F1 (N terminus) and F2 (C terminus) and subfragments thereof, obtained by leukocyte elastase digestion. By Northern blot analyses, Lp(a), but not Lp(a-), caused up to a 12-fold increase in interleukin 8 (IL-8) mRNA as compared with untreated cells. Free apo(a) also induced the production of IL-8 mRNA; however, the effect was 3-4-fold higher than that of Lp(a). The increase in mRNA was associated with the accumulation of IL-8 protein in the culture medium. F1 had only a minimal effect, whereas F2 was 1.5-2-fold more potent than apo(a), an activity mostly contained in the Kringle V-protease region. A monoclonal antibody specific for Kringle V inhibited the apo(a)-mediated effect on IL-8. We conclude that Lp(a) via elements contained in the C-terminal domain of apo(a) causes in THP-1 macrophages an increased production of IL-8, a chemokine with pro-inflammatory properties, an event that may be relevant to the process of atherosclerosis.  相似文献   

10.
应用经PMA诱导衍生的THP-1巨噬细胞为模型,以单克隆抗体C7B封闭oxLDL上的LDL受体结合位点,结果发现,正常细胞在摄取oxLDL时LDL受体与清道夫受体起协同作用;但C7B作用于蓄积了脂质的THP-1巨噬细胞时,对细胞脂质蓄积程度无明显影响,清道夫受体活性不但不降低反而有所升高,说明由于脂质蓄积LDL受体的作用减弱.  相似文献   

11.
Low density lipoprotein (LDL) can be oxidatively modified by cultured endothelial cells or by cupric ions, resulting in increased macrophage uptake of the lipoprotein. This process could be relevant to the formation of macrophage-derived foam cells in the early atherosclerotic lesion. The mechanism of endothelial cell modification of LDL is unknown. In the present work we show that incubation of LDL with purified soybean lipoxygenase, in the presence of pure phospholipase A2, can mimic endothelial cell-induced oxidative modification. Typically, incubation with lipoxygenase plus phospholipase A2 caused: 1) generation of about 15 nmol of thiobarbituric acid-reactive substances per mg of LDL protein; 2) a 4- to 7-fold increase in the rate of subsequent macrophage degradation of the LDL; 3) a 10-fold decrease in recognition by fibroblasts; 4) a marked increase in electrophoretic mobility in agarose gels; and, 5) disappearance of intact apoprotein B on SDS polyacrylamide gels. Degradation of the enzymatically modified LDL by macrophages was competitively inhibited by endothelial cell-modified LDL and by polyinosinic acid, but only partially suppressed by acetylated LDL. The lipoxygenase plus phospholipase A2-induced modification of LDL is not necessarily identical to endothelial cell modification, but it is a useful model for studying the mechanism of oxidative modification of LDL. This work also represents the first example of oxidative modification of LDL by specific enzymes leading to enhanced recognition by macrophages.  相似文献   

12.
The human monocytic leukemia cell line, THP-1, shares many properties with human monocyte-derived macrophages and might be a useful model for studying foam cell formation in vitro. Therefore, we examined the ability of THP-1 cells to accumulate cholesteryl esters, the hallmark feature of foam cells, in response to culture with native low density lipoprotein (LDL), modified LDL, and platelets. THP-1 cells stored more cholesteryl esters than macrophages in response to 200 micrograms/ml of LDL. Down-regulation of LDL receptors occurred in macrophages at lower LDL concentrations than in THP-1 cells. Phorbol ester-treated THP-1 cells stored more cholesteryl esters than human macrophages in response to 25-200 micrograms/ml of acetylated LDL. Because we have previously demonstrated that activated platelets enhanced macrophage cholesteryl ester storage, we examined the ability of THP-1 cells to store cholesteryl esters in response to coculture with platelets. Compared with macrophages, dividing THP-1 cells and phorbol ester-treated THP-1 cells accumulated only 50% and 33% as much cholesteryl esters, respectively. Furthermore, although platelets induced a 90% reduction in cholesterol synthesis in macrophages by day 5, cholesterol synthesis in THP-1 cells and phorbol ester-treated THP-1 cells was inhibited less than 50% by platelets. Nevertheless, both THP-1 cells and macrophages responded to platelets by increasing their secretion of apolipoprotein E. Therefore, we conclude that dividing THP-1 cells and phorbol ester-treated THP-1 cells are capable of forming foam cells in response to physiologic doses of both LDL and acetylated LDL, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
There is accumulating evidence that LDL oxidation is essential for atherogenesis and antioxidants that prevent oxidation may either decelerate or reduce atherogenesis. Current study focused on the effect and mechanism of 3′,4′-dihydroxy-5,6,7,8-tetramethoxyflavone (DTF), a major metabolite of nobiletin (NOB, a citrus polymethoxylated flavone) on atherogenesis. We found DTF had stronger inhibitory activity than α-tocopherol on inhibiting Cu2+-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. Monocyte-to-macrophage differentiation plays a vital role in early atherogenesis. DTF (10–20 μM) dose-dependently attenuated differentiation along with the reduced gene expression of scavenger receptors, CD36 and SR-A, in both PMA- and oxidized low-density lipoprotein (oxLDL)-stimulated THP-1 monocytes. Furthermore, DTF treatment of monocytes and macrophages led to reduction of fluorescent DiI-acLDL and DiI-oxLDL uptake. In conclusion, at least three mechanisms are at work in parallel: DTF reduces LDL oxidation, attenuates monocyte differentiation into macrophage and blunts uptake of modified LDL by macrophage. The effect is different from that of NOB, from which DTF is derived. This study thus significantly enhanced our understanding on how DTF may be beneficial against atherogenesis.  相似文献   

14.
It has been suggested that the oxidative modification of low density lipoprotein (LDL) is a key event in atherogenesis. Several mechanisms have been proposed to explain how different types of cells modify LDL. In this study we examine the relative contributions of superoxide anions and cellular lipoxygenase (LO) in the modification of LDL by macrophages. Superoxide dismutase (SOD) inhibited LDL oxidation by macrophages but only by 25%. Under the same conditions, several LO inhibitors (eicosatetraynoic acid (ETYA), piriprost, and A-64077) almost completely inhibited the modification of LDL by macrophages. SOD had a greater inhibitory effect on the modification of LDL by U937 cells and fibroblasts (32% and 64%, respectively) but again LO inhibitors had a much greater effect (79 to 100% inhibition). Incubation of [1-14C]linoleic acid with mouse peritoneal macrophages resulted in its conversion to a single more polar product coeluting with 13- and 9-HODE by reverse phase HPLC. When the cells were preincubated with LO inhibitors, formation of this product was significantly inhibited. It is concluded that the modification of LDL by macrophages is mediated in large part by lipoxygenase-type activity.  相似文献   

15.
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.  相似文献   

16.
SUMMARY

Senescent, or damaged, erythrocytes are removed from the blood stream mainly by the macrophage system. Such cells may acquire and store large quantities of the redox-active transition metal iron that, if released together with superoxide and hydrogen peroxide during an oxidative burst, may induce peroxidative reactions with a variety of surrounding substances, e.g., low-density lipoprotein (LDL). In this study we demonstrate 1. the temporary sequestration of iron within the secondary lysosomal apparatus of both established macrophage-like J-774 cells and human monocyte-derived macrophages secondary to the uptake and degradation of native and photo-oxidized (ultraviolet UV light) erythrocytes; and 2. an ensuing development by these cells of a capacity for iron-exocytosis. The binding and uptake by human macrophages and J-774 cells of artificially aged, UV-irradiated erythrocytes were stimulated compared to that of native erythrocytes. The uptake resulted in lysosomal accumulation of iron in a low-molecular weight form, as shown by autometallography. Cells exposed to ferric chloride were used as positive controls. Ensuing exocytosis of iron to the culture medium was demonstrated by atomic absorption spectroscopy. Our findings suggest that macrophage erythrophagocytosis is a useful model for the study of the sequestration of iron within the macrophage acidic vacuolar apparatus, its subsequent exocytosis, and oxidative effect on extracellular LDL.  相似文献   

17.
Electronegative LDL (LDL(-)) and free fatty acids (FFAs) are circulating risk factors for cardiovascular diseases (CVDs) and have been associated with inflammation. Interleukin-1 beta (IL-1β) represents a key cytokine in the development of CVD; however, the initial trigger of IL-1β in CVD remains to be explored. In this study, we investigated the combined effects of LDL(-) from the plasma of ST-segment elevation myocardial infarction (STEMI) patients or diet-induced hypercholesterolemic rabbits and bovine serum albumin bound palmitic acid (PA-BSA) on IL-1β production in macrophages. Macrophages derived from THP-1 cells or human peripheral blood mononuclear cells were independently treated with LDL(-), PA-BSA or cotreated with LDL(-) and PA-BSA. The results showed that nLDL and/or PA-BSA had no effect on IL-1β, and LDL(-) slightly increased IL-1β; however, cotreatment with LDL(-) and PA-BSA resulted in abundant secretion of IL-1β in macrophages. Rabbit LDL(-) induced the elevation of cellular pro-IL-1β and p-Iκ-Bα, but PA-BSA had no effect on pro-IL-1β or p-Iκ-Bα. In potassium-free buffer, LDL(-)-induced IL-1β reached a level similar to that induced by cotreatment with LDL(-) and PA-BSA. Moreover, LDL(-) and PA-BSA-induced IL-1β was inhibited in lectin-type oxidized LDL receptor-1 (LOX-1) knockdown cells and by blockers of voltage-gated potassium (Kv) channels. LDL(-) from diet-induced hypercholesterolemic rabbit had a similar effect as STEMI LDL(-) on IL-1β in macrophages. These results show that PA-BSA cooperates with LDL(-) to trigger IL-1β production in macrophages via a mechanism involving the LOX-1 and Kv channel pathways, which may play crucial roles in the regulation of inflammation in CVD.  相似文献   

18.
Oxidized low-density lipoproteins (oxLDL) play a crucial role in atherogenesis mainly via their capacity to bind and to activate macrophages. However, the role of the protein LDL moiety in this process is not yet established. In this study, human LDL were exposed to hypochlorous acid (HOCl), a selective protein oxidant, or copper sulfate (CuSO(4)), a major lipid oxidant, and tested for their capacity to activate the NADPH-oxidase of human THP-1- and U937-derived macrophages as measured by lucigenin chemiluminescence (CL). Compared to native LDL which had no effect, HOCl-oxLDL triggered potent CL responses in both U937 and THP-1 cells but only when these were fully differentiated into macrophages by phorbol myristate acetate. In contrast, Cu-oxLDL only triggered a moderate CL response of U937 cells and had little effect on THP-1 cells. While delipidation did not affect HOCl-oxLDL-induced CL response it abolished that induced by Cu-oxLDL. Interestingly, U937 cells showed higher CL responses to both types of oxLDL than THP-1 cells, a finding which could be related to their higher expression of the scavenger receptor CD36. Taken together these results strongly support the role of the protein moiety in oxLDL-induced macrophage activation.  相似文献   

19.
20.
Secretion of pro-inflammatory chemokines and cytokines by macrophages is a contributory factor in the pathogenesis of atherosclerosis. In this study, the effects of chylomicron remnants (CMR), the lipoproteins which transport dietary fat in the blood, on the production of pro-inflammatory chemokine and cytokine secretion by macrophages was investigated using CMR-like particles (CRLPs) together with THP-1 macrophages or primary human macrophages (HMDM). Incubation of CRLPs or oxidized CRLPs (oxCRLPs) with HMDM or THP-1 macrophages for up to 24h led to a marked decrease in the secretion of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β (-50-90%), but these effects were reduced or abolished when CRLPs protected from oxidation by incorporation of the antioxidant drug, probucol, (pCRLPs) were used. In macrophages transfected with siRNA targeted to the low density lipoprotein receptor (LDLr), neither CRLPs nor pCRLPs had any significant effect on chemokine/cytokine secretion, but in cells transfected with siRNA targeted to the LDLr-related protein 1 (LRP1) both types of particles inhibited secretion to a similar extent to that observed with CRLPs in mock transfected cells. These findings demonstrate that macrophage pro-inflammatory chemokine/cytokine secretion is down-regulated by CMR, and that these effects are positively related to the lipoprotein oxidative state. Furthermore, uptake via the LDLr is required for the down-regulation, while uptake via LRP1 does not bring about this effect. Thus, the receptor-mediated route of uptake of CMR plays a crucial role in modulating their effects on inflammatory processes in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号